Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level

Reproducible Science (Including Git, Docker, and Binder)

Krembil Centre for Neuroinformatics

This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R. 

 

INCF Assembly 2022 - Day 3 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 Day 3. 

VIEW THE PROGRAM

 

Neuroscience for Machine Learners (Neuro4ML)

Neural Reckoning Group

This is a freely available online course on neuroscience for people with a machine learning background. The aim is to bring together these two fields that have a shared goal in understanding intelligent processes. Rather than pushing for “neuroscience-inspired” ideas in machine learning, the idea is to broaden the conceptions of both fields to incorporate elements of the other in the hope that this will lead to new, creative thinking.

 

Using brainlife.io

brainlife.io

This course provides several visual walkthroughs documenting how to execute various processes in brainlife.io, an open-source, free and secure reproducible neuroscience analysis platform. The platform allows to analyze Magnetic Resonance Imaging (MRI), electroencephalography (EEG) and magnetoencephalography (MEG) data. Data can either be uploaded from local computers or imported from public archives such as OpenNeuro.org.

 

Notebooks

Notebook systems are proving invaluable to skill acquisition, research documentation, publication, and reproducibility.  This series of presentations introduces the most popular platform for computational notebooks, Project Jupyter, as well as other resources like Binder and NeuroLibre. 

 
INCF TrainingSpace

Deep Learning: Control

NYU Center for Data Science

This module covers the concepts of model predictive control, emulation of the kinematics from observations, training a policy, and predictive policy learning under uncertainty. It is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer

 

The Virtual Brain: Bernstein Center Lectures 2019

The Virtual Brain

This course provides a general overview about brain simulation, including its fundamentals as well as clinical applications in populations with stroke, neurodegeneration, epilepsy, and brain tumors. This course also introduces the mathematical framework of multi-scale brain modeling and its analysis.

 

INCF Assembly 2022 - Training Day 2

INCF

This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.

 

Introduction to Neurodata Without Borders (NWB) for Python Users II

NWB Core Development Team

The Neurodata Without Borders: Neurophysiology project (NWB:N, https://www.nwb.org/) is an effort to standardize the description and storage of neurophysiology data and metadata. NWB enables data sharing and reuse and reduces the energy barrier to applying data analytics both within and across labs. Several laboratories, including the Allen Institute for Brain Science, have wholeheartedly adopted NWB.

 

Machine Learning

Neuromatch Academy

Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.

 

Introductory Concepts

Krembil Centre for Neuroinformatics

This couse is the opening module for the University of Toronto's Krembil Centre for Neuroinformatics' virtual learning series Solving Problems in Mental Health Using Multi-Scale Computational Neuroscience. Lessons in this course introduce participants to the study of brain disorders, starting from elemental units like genes and neurons, eventually building up to whole-brain modelling and global activity patterns.

 

Coding and Vision 101

Allen Institute for Brain Science

This course consists of 12 lectures on the visual system and neural coding produced by the Allen Institute for Brain Science. The lectures cover broad neurophysiological concepts such as information theory and the mammalian visual system, as well as more specific topics such as cell types and their functions in the mammalian retina. 

 

Module 4: fMRI

Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

 

Module 1: Spikes

Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

 

Foundations of Data Science

Datalabcc

Data science relies on several important aspects of mathematics. In this course, you'll learn what forms of mathematics are most useful for data science, and see some worked examples of how math can solve important data science problems.

 
INCF TrainingSpace

INCF Assembly 2023 - Lightning Talks (Day 1)

INCF

This course consists of three lessons, each corresponding to a lightning talk given at the first day of INCF's Neuroinformatics Assembly 2023. By following along these brief talks, you will hear about topics such as open source tools for computer vision, tools for the integration of various MRI dataset formats, as well as international data governance. 

 

The Virtual Brain Node #10 Workshop: Personalized Multi-Scale Brain Simulation

The Virtual Brain

This workshop provides basic knowledge on personalized brain network modeling using the open-source simulation platform The Virtual Brain (TVB). Participants will gain theoretical knowledge and apply this knowledge to construct brain models, process multimodal neuroimaging data for reconstructing individual brains, run simulations, and use supporting neuroinformatics tools such as collaboratories, pipelines, workflows, and data repositories.

 

The Future of Medical Data Sharing in Clinical Neurosciences

EBRAINS

This workshop hosted by HBP, EBRAINS, and the European Academy of Neurology (EAN) aimed to identify and openly discuss all issues and challenges associated with data sharing in Europe: from ethics to data safety and privacy including those specific to data federation such as the development and validation of federated algorithms. 

 

 

Fundamental Methods for Single-Cell Transcriptome Analysis

Krembil Centre for Neuroinformatics

This course, consisting of one lecture and two workshops, is presented by the Computational Genomics Lab at the Centre for Addiction and Mental Health and University of Toronto. The lecture deals with single-cell and bulk level transciptomics, while the two hands-on workshops introduce users to transcriptomic data types (e.g., RNAseq) and how to perform analyses in specific use cases (e.g., cellular changes in major depression). 

 
INCF TrainingSpace

Session 6: Research Workflows for Collaborative Neuroscience

INCF

This course contains videos, lectures, and hands-on tutorials as part of INCF's Neuroinformatics Assembly 2023 workshop on developing robust and reproducible research workflows to foster greater collaborative efforts in neuroscience.