The lecture series focuses on current trends in modern techniques in neuroscience. Inspiring scientists from the NeurotechEU Alliance will give an overview of the latest advances and developments.
Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools.
This module is intended to provide a foundation in energy-based models, and is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: <
This course contains sessions from the first day of INCF's Neuroinformatics Assembly 2022.
Notebook systems are proving invaluable to skill acquisition, research documentation, publication, and reproducibility. This series of presentations introduces the most popular platform for computational notebooks, Project Jupyter, as well as other resources like Binder and NeuroLibre.
Data science relies on several important aspects of mathematics. In this course, you'll learn what forms of mathematics are most useful for data science, and see some worked examples of how math can solve important data science problems.
Future computing systems will capitalize on our increased understanding of the brain through the use of similar architectures and computational principles. During this workshop, we bring together recent developments in this rapidly developing field of neuromorphic computing systems, and also discuss challenges ahead.
This course provides a general overview about brain simulation, including its fundamentals as well as clinical applications in populations with stroke, neurodegeneration, epilepsy, and brain tumors. This course also introduces the mathematical framework of multi-scale brain modeling and its analysis.
In this course we present the TVB-EBRAINS integrated workflows that have been developed in the Human Brain Project in the third funding phase (“SGA2”) in the Co-Design Project 8 “The Virtual Brain”.
In this course, you will learn how computational neuroscientists use mathematical models and computer simulations to study different plasticity phenomena in the brain. During the course, you will program your own neuron model, a so-called leaky-integrate-and-fire (LIF) neuron model, and simulate it with a computer. You will also learn how to add various neuronal properties and plasticity mechanisms to the model and study how they operate.
This course covers the concepts of recurrent and convolutional nets (theory and practice), natural signals properties and the convolution, and recurrent neural networks (vanilla and gated, LSTM).
This course explores ethical and social issues that have arisen, and continue to arise, from the rapid research development in neuroscience, medicine, and ICT. Lectures focus on key ethical issues contained in the HBP – such as the ethics of robotics, dual use, ICT ethical issues, big data and individual privacy, and the use of animals in research.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This course begins with the conceptual basics of machine learning and then moves on to some Python-based applications of popular supervised learning algorithms to neuroscience data. This is followed by a series of lectures that explore the history and applications of deep learning, ending with a presentation on the potential of deep learning for neuroscience applications/mis-applications.
This course tackles the issue of maintaining ethical research and healthcare practices in the age of increasingly powerful technological tools like machine learning and artificial intelligence. While there is great potential for innovation and improvement in the clinical space thanks to AI development, lecturers in this course advocate for a greater emphasis on human-centric care, calling for algorithm design which takes the full intersectionality of individuals into account.
The Virtual Brain EduPack provides didactic use cases for The Virtual Brain (TVB). Typically a use case consists of a jupyter notebook and a didactic video. EduPack use cases help the user to reproduce TVB-based publications or to get started quickly with TVB.
The landscape of scientific research is changing. Today’s researchers need to participate in large-scale collaborations, obtain and manage funding, share data, publish, and undertake knowledge translation activities in order to be successful. As per these increasing demands, Science Management is now a vital piece of the environment. This course consists of lectures presenting practical techniques, tools, and project management skills that participants can begin to implement.
This course is intended to introduce researchers to the Open Science Framework (OSF). OSF is a free, open source web application built by the Center for Open Science, a non-profit dedicated to improving the alignment between scientific values and scientific practices. OSF is part collaboration tool, part version control software, and part data archive.
In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.
This introductory-level course provide learners with an introduction to the field of neuroethics and spans the ethics of neuroscience to the neuroscience of ethics. The ethics of neuroscience lectures cover the ethical issues that arise in device/drug enhancement, imaging/monitoring, and social uses of neuroscience in the legal/justice system. The neuroscience of ethics lectures cover the origin of ethics (neural mechanisms and evolutionary origin).