Sessions from the INCF Neuroinformatics Assembly 2022 day 1.
This couse is the opening module for the University of Toronto's Krembil Centre for Neuroinformatics' virtual learning series Solving Problems in Mental Health Using Multi-Scale Computational Neuroscience. Lessons in this course introduce participants to the study of brain disorders, starting from elemental units like genes and neurons, eventually building up to whole-brain modelling and global activity patterns.
This course introduces researchers to the Brain Imaging Data Structure (BIDS), the official community standard for organizing and sharing PET data. BIDS simplifies collaboration, streamlines analysis, and ensures your research remains future-proof by enabling compatibility with an ever-growing ecosystem of open datasets and community-developed tools.
There is a broad consensus among researchers, publishers, and funding bodies that open sharing of data is needed to address major reproducibility and transparency challenges that currently exist in all scientific disciplines. In addition to potentially increasing the utilization of shared data through re-analysis and integration with other data, data sharing is beneficial for individual researchers through data citation and increased exposure of research.
This course consists of a series of webinars organized by the International Neuroethics Society on various neuroethics topics.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.
This couse is the opening module for the University of Toronto's Krembil Centre for Neuroinformatics' virtual learning series Solving Problems in Mental Health Using Multi-Scale Computational Neuroscience. Lessons in this course introduce participants to the study of brain disorders, starting from elemental units like genes and neurons, eventually building up to whole-brain modelling and global activity patterns.
As research methods and experimental technologies become ever more sophisticated, the amount of health-related data per individual which has become accessible is vast, giving rise to a corresponding need for cross-domain data integration, whole-person modelling, and improved precision medicine. This course provides lessons describing state of the art methods and repositories, as well as a tutorial on computational methods for data integration.
This workshop delves into the need for, structure of, tools for, and use of hierarchical event descriptor (HED) annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. HED are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding.
The CAJAL Course in Computational Neuroscience teaches the central ideas, methods, and practice of modern computational neuroscience through a combination of lectures and hands-on project work. This course is designed for graduate students and postdoctoral fellows from a variety of disciplines, including neuroscience, physics, electrical engineering, computer science, mathematics, and psychology.
In this course, you will learn how computational neuroscientists use mathematical models and computer simulations to study different plasticity phenomena in the brain. During the course, you will program your own neuron model, a so-called leaky-integrate-and-fire (LIF) neuron model, and simulate it with a computer. You will also learn how to add various neuronal properties and plasticity mechanisms to the model and study how they operate.
This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.
This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.
The International Brain Initiative (IBI) is a consortium of the world’s major large-scale brain initiatives and other organizations with a vested interest in catalyzing and advancing neuroscience research through international collaboration and knowledge sharing. This session will introduce the IBI and the current efforts of the Data Standards and Sharing Working Group with a view to gain input from a wider neuroscience and neuroinformatics community.
This course consists of 12 lectures on the visual system and neural coding produced by the Allen Institute for Brain Science. The lectures cover broad neurophysiological concepts such as information theory and the mammalian visual system, as well as more specific topics such as cell types and their functions in the mammalian retina.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.