Bayesian inference (using prior knowledge to generate more accurate predictions about future events or outcomes) has become increasingly applied to the fields of neuroscience and neuroinformatics. In this course, participants are taught how Bayesian statistics may be used to build cognitive models of processes like learning or perception. This course also offers theoretical and practical instruction on dynamic causal modeling as applied to fMRI and EEG data.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This workshop provides an opportunity to explore the advanced tools and techniques for data sharing, analysis, visualization, and simulation.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data. In this course, you will learn about features incorporated into EEGLAB, including independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. EEGLAB runs under Linux, Unix, Windows, and Mac OS X.
This workshop provides basic knowledge on personalized brain network modeling using the open-source simulation platform The Virtual Brain (TVB). Participants will gain theoretical knowledge and apply this knowledge to construct brain models, process multimodal neuroimaging data for reconstructing individual brains, run simulations, and use supporting neuroinformatics tools such as collaboratories, pipelines, workflows, and data repositories.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data. In this course, you will learn about features incorporated into EEGLAB, including independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. EEGLAB runs under Linux, Unix, Windows, and Mac OS X.
This course corresponds to the first session of talks given at INCF's Neuroinformatics Assembly 2023. The sessions consists of several lectures, focusing on using the principles of FAIR (findability, accessibility, interoperability, and reusability) to inform future directions in neuroscience and neuroinformatics. In particular, these talks deal with the development of knowledge graphs and ontologies.
This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.
This brief course consists of slides on data science and reproducibility issues from lectures given at Maastricht University.
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.
This workshop provides basic knowledge on personalized brain network modeling using the open-source simulation platform The Virtual Brain (TVB). Participants will gain theoretical knowledge and apply this knowledge to construct brain models, process multimodal neuroimaging data for reconstructing individual brains, run simulations, and use supporting neuroinformatics tools such as collaboratories, pipelines, workflows, and data repositories.
“Computational Thinking“ refers to a mindset or set of tools used by computational or ICT specialists to describe their work. This course is intended for people outside of the ICT field to allow students to understand the way that computer specialists analyse problems and to introduce students to the basic terminology of the field.
This lecture series is presented by NeuroTechEU, an alliance between eight European universities with the goal to build a trans-European network of excellence in brain research and technologies. By following along with this series, participants will learn about the history of cognitive science and the development of the field in a sociocultural context, as well as its trajectory into the future with the advent of artificial intelligence and neural network development.
Sessions from the INCF Neuroinformatics Assembly 2022 Day 3.
Sessions from the INCF Neuroinformatics Assembly 2022 day 2.
This course tackles the issue of maintaining ethical research and healthcare practices in the age of increasingly powerful technological tools like machine learning and artificial intelligence. While there is great potential for innovation and improvement in the clinical space thanks to AI development, lecturers in this course advocate for a greater emphasis on human-centric care, calling for algorithm design which takes the full intersectionality of individuals into account.
This course consists of introductory lectures on different aspects of biophysical models. By following this course you will learn about various neuronal models, neuron anatomy and signaling, as well the numerous and complex cellular mechanisms underlying healthy brain function.
The Neurodata Without Borders: Neurophysiology project (NWB, https://www.nwb.org/) is an effort to standardize the description and storage of neurophysiology data and metadata. NWB enables data sharing and reuse and reduces the energy-barrier to applying data analytics both within and across labs. Several laboratories, including the Allen Institute for Brain Science, have wholeheartedly adopted NWB.
Most neuroscience journals request authors to make their data publicly available in appropriate repositories. The requirements and policies put forward by journals vary, and the services provided for different types of data also differ considerably across repositories.