Neurohackademy is a two-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute. Participants learn about technologies used to analyze human neuroscience data, and to make analyses and results shareable and reproducible.
Most approaches within computational neuroscience simulate systems, brain networks, local circuits, as they are now. In recent years, homeostatic regulation has been characterized and modeled; however, for understanding diseases that have their origin in genetic defects that emerge at later age, it is important to understand how these defects interact with developmental processes that occur earlier and last longer that the typical period considered for homeostatic studies.
In this course we present the TVB-EBRAINS integrated workflows that have been developed in the Human Brain Project in the third funding phase (“SGA2”) in the Co-Design Project 8 “The Virtual Brain”.
This short course covers Hypothes.is, an annotation tool that enables users to collaboratively annotate course readings and other internet resources.
Features of Hypothes.is:
This course features tutorials on how to use Allen atlases and digital brain atlasing tools, including operational and user features of the Allen Mouse Brain Atlas, as well as the Allen Institute's 3D viewing tool, Brain Explorer®.
Notebook systems are proving invaluable to skill acquisition, research documentation, publication, and reproducibility. This series of presentations introduces the most popular platform for computational notebooks, Project Jupyter, as well as other resources like Binder and NeuroLibre.
Get up to speed about the fundamental principles of full brain network modeling using the open-source neuroinformatics platform The Virtual Brain (TVB). This simulation environment enables the biologically realistic modeling of whole-brain network dynamics across different brain scales, using personalized structural connectome-based approach.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This workshop is organized by the German National Research Data Infrastructure Initiative Neuroscience (NFDI-Neuro). The initiative is community driven and comprises around 50 contributing national partners and collaborators. NFDI-Neuro partners with EBRAINS AISB, the coordinating entity of the EU Human Brain Project and the EBRAINS infrastructure. We will introduce common methods that enable digital reproducible neuroscience.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
These courses give introductions and overviews of some of the major statistics software packages currently used in neuroscience research.
“Computational Thinking“ refers to a mindset or set of tools used by computational or ICT specialists to describe their work. This course is intended for people outside of the ICT field to allow students to understand the way that computer specialists analyse problems and to introduce students to the basic terminology of the field.
Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools.
The dimensionality and size of datasets in many fields of neuroscience research require massively parallel computing power. Fortunately, the maturity and accessibility of virtualization technologies has made it feasible to run the same analysis environments on platforms ranging from single laptop computers up to high-performance computing networks.
This couse is the opening module for the University of Toronto's Krembil Centre for Neuroinformatics' virtual learning series Solving Problems in Mental Health Using Multi-Scale Computational Neuroscience. Lessons in this course introduce participants to the study of brain disorders, starting from elemental units like genes and neurons, eventually building up to whole-brain modelling and global activity patterns.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This course is intended to introduce researchers to the Open Science Framework (OSF). OSF is a free, open source web application built by the Center for Open Science, a non-profit dedicated to improving the alignment between scientific values and scientific practices. OSF is part collaboration tool, part version control software, and part data archive.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This course consists of introductory lectures on different aspects of biophysical models. By following this course you will learn about various neuronal models, neuron anatomy and signaling, as well the numerous and complex cellular mechanisms underlying healthy brain function.