Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level

Neuroimaging Connectomics

Krembil Centre for Neuroinformatics

This course consists of one lesson and one tutorial, focusing on the neural connectivity measures derived from neuroimaging, specifically from methods like functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI). Additional tools such as tractography and parcellation are discussed in the context of brain connectivity and mental health. The tutorial leads participants through the computation of brain connectomes from fMRI data. 

 

Brain Medicine for Non-Specialists

HBP Education Programme

The human mind is a complex system that produces, processes, and transmits information in an incomparable manner. Human thoughts and actions depend profoundly on the proper function of neurons. If this function is disrupted, degeneration and disease can be the consequence. This course provides insights into state-of-the-art views on neurodegenerative, neuropsychiatric, and neuroimmunological disorders as well as clinical neuroanatomy and clinical aspects of brain imaging.

 

Open Science Framework (OSF)

Center for Open Science

This course is intended to introduce researchers to the Open Science Framework (OSF). OSF is a free, open source web application built by the Center for Open Science, a non-profit dedicated to improving the alignment between scientific values and scientific practices. OSF is part collaboration tool, part version control software, and part data archive.

 

Coding and Vision 101

Allen Institute for Brain Science

This course consists of 12 lectures on the visual system and neural coding produced by the Allen Institute for Brain Science. The lectures cover broad neurophysiological concepts such as information theory and the mammalian visual system, as well as more specific topics such as cell types and their functions in the mammalian retina. 

 
INCF TrainingSpace

Deep Learning: Foundations of Energy-Based Models

NYU Center for Data Science

This module is intended to provide a foundation in energy-based models, and is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: <

 

International Neuroethics Society Webinar Series

International Neuroethics Society

This course consists of a series of webinars organized by the International Neuroethics Society on various neuroethics topics. 

 

Statistical Models

COSYNE

This course consists of two introductory lectures on different aspects of statistical models, in which you will learn about the neural coding problem, aspects of neural activity carry information, multiple spike train models, latent variable models, and regularization. 

 
INCF TrainingSpace

2021 Virtual Miniscope Workshop

MetaCell

A virtual workshop with lectures and hands-on tutorials that will teach participants how to use open-source Miniscopes for in vivo calcium imaging. This workshop is designed to introduce all aspects of using Miniscopes, including basic principles of Miniscope design and imaging, how to build and attach a Miniscope, how to implant a GRIN lens for imaging deep structures, and how to analyze imaging data.

 

Population-Based Data Resources & Integrative Research Methods

Krembil Centre for Neuroinformatics

As research methods and experimental technologies become ever more sophisticated, the amount of health-related data per individual which has become accessible is vast, giving rise to a corresponding need for cross-domain data integration, whole-person modelling, and improved precision medicine. This course provides lessons describing state of the art methods and repositories, as well as a tutorial on computational methods for data integration. 

 

Bayesian Models of Learning and Integration of Neuroimaging Data

Krembil Centre for Neuroinformatics

Bayesian inference (using prior knowledge to generate more accurate predictions about future events or outcomes) has become increasingly applied to the fields of neuroscience and neuroinformatics. In this course, participants are taught how Bayesian statistics may be used to build cognitive models of processes like learning or perception. This course also offers theoretical and practical instruction on dynamic causal modeling as applied to fMRI and EEG data.

 
INCF TrainingSpace

Session 1: A FAIR Roadmap for Knowledge Graphs and Ontologies

INCF

This course corresponds to the first session of talks given at INCF's Neuroinformatics Assembly 2023. The sessions consists of several lectures, focusing on using the principles of FAIR (findability, accessibility, interoperability, and reusability) to inform future directions in neuroscience and neuroinformatics. In particular, these talks deal with the development of knowledge graphs and ontologies. 

 

Simulating Brain Microcircuit Activity and Signals in Mental Health

Krembil Centre for Neuroinformatics

This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.

 
INCF TrainingSpace

Introduction to Computational Neuroscience

INCF

Most who enter the field of computational neuroscience have a prior background in either mathematics, physics, computer science, or (neuro)biology. Since computational neuroscience requires a bit of knowledge from all these fields, with some basic knowledge of neurons and a familiarity with certain types of equations and mathematical concepts, we recommend two different "starting tracks" depending on the student's background before you begin the lectures listed below:

 

Research, Ethics, and Societal Impact

HBP Education Programme

This course explores ethical and social issues that have arisen, and continue to arise, from the rapid research development in neuroscience, medicine, and ICT. Lectures focus on key ethical issues contained in the HBP – such as the ethics of robotics, dual use, ICT ethical issues, big data and individual privacy, and the use of animals in research.

 

Publishing

This course is currently under construction but will coming soon.  It will give an overview of the world of scientific publishing, spanning from traditional formats, to open to access, to open, interactive, reproducible, and 'living' publications with modifiable and executable code.

 
INCF TrainingSpace

The Neuroinformatics of Neuroanatomy

INCF

Neuroanatomy provides one of the unifying frameworks for neuroscience and thus it is not surprising that it provides the basis for many neuroinformatics tools and approaches.  Regardless of whether one is working at the subcellular, cellular or gross anatomical level or whether one is modeling circuitry, molecular pathways or function, at some point, this work will include an anatomical reference.

 

Programming

A number of programming languages are ubiquitous in modern neuroscience and are key to the competence, freedom, and creativity necessary in neuroscience research. This course offers lectures on the fundamentals of data science and specific neuroinformatic tools used in the investigation of brain data. Attendees of this course will be learn about the programming languages Python, R, and MATLAB, as well as their associated packages and software environments. 

 
INCF TrainingSpace

Basic Mathematics for Computational Neuroscience

Alex Williams

A series of short explanations of the basic equations underlying computational neuroscience.

 

Applied Ethics in Machine Learning and Mental Health

Krembil Centre for Neuroinformatics

This course tackles the issue of maintaining ethical research and healthcare practices in the age of increasingly powerful technological tools like machine learning and artificial intelligence. While there is great potential for innovation and improvement in the clinical space thanks to AI development, lecturers in this course advocate for a greater emphasis on human-centric care, calling for algorithm design which takes the full intersectionality of individuals into account.

 

General Perspectives on FAIR

INCF

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible, Interoperable and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define.