Skip to main content

TVB Made Easy

In this short series of lectures, participants will take a look at articles using TVB in a clinical context. Specifically, participants will see how TVB can help to predict recovery after stroke and how individual epileptic seizures are simulated. The course lecturers will briefly describe the methods used and results achieved in the articles. Using the graphical user interface, participants will replicate the principle ideas of the articles and see how artificial lesions introduced in the connectome alter brain dynamics, as well es how seizures spreading through the brain network can be modelled. All videos are using the default TVB dataset, such that you can follow along each step in your own TVB GUI.

Lessons of this Course

Learn how to simulate strokes with the simulation platform, The Virtual Brain. We will go through two papers: Functional Mechanisms of Recovery after Stroke: Modeling with The Virtual Brain and The Virtual Brain: Modeling Biological Correlates of Recovery After Chronic Stroke, and apply the same processes with our own structural connectivity data set in The Virtual Brain.


Learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper: On the Nature of Seizure Dynamics which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.


In this lecture we will focus on a paper called “The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread”. Within their work, the authors used the epileptor model to simulate a patient's individual seizure. To understand the concept we will have a closer look at the equations of the epileptor model and particular the epileptogenicity index which controls the excitability of each brain region. Subsequently, we will begin to setup the epileptogenic zone in our own brain network model with TVB.


After introducing the local epileptor model in the previous 2 videos we will now use it in a large scale brain simulation. We again focus on the paper “The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread”. Two simulations with different epileptogenicity across the network are visualized to show the difference in seizure spread across the cortex.


This lecture gives an overview on the article “Individual brain structure and modelling predict seizure propagation” where 15 subjects with epilepsy were modelled to predict individual epileptogenic zones. With the TVB GUI we will model seizure spread and the effect of lesioning the connectome. The impact of cutting edges in the network on seizure spreading will be visualized.