Skip to main content

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health. 

Difficulty level: Intermediate
Duration: 1:47:22

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices. 

Difficulty level: Intermediate
Duration: 1:39:04

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system. 

Difficulty level: Intermediate
Duration: 4:10
Speaker: : Dan Goodman

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks. 

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

In this lesson you will learn about current efforts towards integrating multimodal human brain data using the open source SCORE HED library schema. 

Difficulty level: Beginner
Duration: 23:29
Speaker: : Dora Hermes

This talk covers the differences between applying HED annotation to fMRI datasets versus other neuroimaging practices, and also introduces an analysis pipeline using HED tags. 

Difficulty level: Beginner
Duration: 22:52
Speaker: : Monique Denissen

This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.

Difficulty level: Beginner
Duration: 8:11
Speaker: : Thomas Wachtler

This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.

Difficulty level: Beginner
Duration: 15:57
Speaker: : Andrew Davison

This video explains what metadata is, why it is important, and how you can organize your metadata to increase the FAIRness of your data on EBRAINS.

Difficulty level: Beginner
Duration: 17:23
Speaker: : Ulrike Schlegel

Overview of the content for Day 1 of this course.

Difficulty level: Beginner
Duration: 00:01:59
Speaker: : Tristan Shuman

Overview of Day 2 of this course.

Difficulty level: Beginner
Duration: 00:03:28
Speaker: : Tristan Shuman

Best practices: the tips and tricks on how to get your Miniscope to work and how to get your experiments off the ground.

Difficulty level: Beginner
Duration: 00:53:34

This talk compares various sensors and resolutions for in vivo neural recordings.

Difficulty level: Beginner
Duration: 00:24:03

This talk delves into challenges and opportunities of Miniscope design, seeking the optimal balance between scale and function.

Difficulty level: Beginner
Duration: 00:21:51

Attendees of this talk will learn aobut computational imaging systems and associated pipelines, as well as open-source software solutions supporting miniscope use.

Difficulty level: Beginner
Duration: 00:17:56

This talk covers the present state and future directions of calcium imaging data analysis, particularly in the context of one-photon vs two-photon approaches. 

Difficulty level: Beginner
Duration: 00:21:06

In this talk, results from rodent experimentation using in vivo imaging are presented, demonstrating how the monitoring of neural ensembles may reveal patterns of learning during spatial tasks.

Difficulty level: Beginner
Duration: 00:19:43

How to start processing the raw imaging data generated with a Miniscope, including developing a usable pipeline and demoing the Minion pipeline.

Difficulty level: Beginner
Duration: 00:57:26