This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain.
The Virtual Brain (TVB) is an open-source, multi-scale, multi-modal brain simulation platform. In this lesson, you get introduced to brain simulation in general and to TVB in particular. This lesson also presents the newest approaches for clinical applications of TVB - that is, for stroke, epilepsy, brain tumors, and Alzheimer’s disease - and show how brain simulation can improve diagnostics, therapy, and understanding of neurological disease.
This lesson explains the mathematics of neural mass models and their integration to a coupled network. You will also learn about bifurcation analysis, an important technique in the understanding of non-linear systems and as a fundamental method in the design of brain simulations. Lastly, the application of the described mathematics is demonstrated in the exploration of brain stimulation regimes.
In this lesson, the simulation of a virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved clinical results. You will learn about the fundamentals of epilepsy, as well as the concepts underlying epilepsy simulation. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.
This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.
This talk presents state-of-the-art methods for ensuring data privacy with a particular focus on medical data sharing across multiple organizations.
This lecture talks about the usage of knowledge graphs in hospitals and related challenges of semantic interoperability.
This lecture gives an introduction to the European Academy of Neurology, its recent achievements and ambitions.
This lecture discusses the the importance and need for data sharing in clinical neuroscience.
This lecture presents the Medical Informatic Platform's data federation for Traumatic Brain Injury.
This lecture gives an overview on the European Health Dataspace.
This lecture presents the Medical Informatics Platform's data federation in epilepsy.
This lecture covers the biomedical researcher's perspective on FAIR data sharing and the importance of finding better ways to manage large datasets.
This lecture covers the benefits and difficulties involved when re-using open datasets, and how metadata is important to the process.
This lecture covers how you can make your data public through EBRAINS. This talk focuses on the ethical considerations for sharing data, the requirements that are imposed by various regulations, particularly for sharing human data. The lecture also includes a discussion of how EBRAINS designs its services to deal with the ethical and regulatory aspects of sharing these kinds of data.
This lecture discusses differential privacy and synthetic data in the context of medical data sharing in clinical neurosciences.
This presentation discusses the impact of data sharing in stroke.
This talks discusses data sharing in the context of dementia. It explains why data sharing in dementia is important, how data is usually shared in the field and illustrates two examples: the Netherlands Consortium Dementia cohorts and the European Platform for Neurodegenerative Diseases.
This talk introduces data sharing initiatives in Epilepsy, particularly across Europe.