Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level

Ethics and Governance

Ethical conduct of science, good governance of data, and accelerated translation to the clinic are key to high-calibre open neuroscience.  Everyday practitioners of science must be sensitized to a range of ethical considerations in their research, some having especially to do with open data-sharing. The lessons included in this course introduce a number of these topics and end with concrete guidance for participant consent and de-identification of data.

 

Foundations of Machine Learning in Python

NeurotechEU

Course designed for advanced learners interested in understanding the foundations of Machine Learning in Python.

General: The course consists of 15 lectures (ca. 1-2 hours each) and 15 exercise sheets (for ca. 6 hours of programming each).

Institution: High-Performance Computing and Analytics Lab, University of Bonn

 

Optimal Control

Neuromatch Academy

Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.

 

Ethics and Governance

Ethical conduct of science, good governance of data, and accelerated translation to the clinic are key to high-calibre open neuroscience.  Everyday practitioners of science must be sensitized to a range of ethical considerations in their research, some having especially to do with open data-sharing. The lessons included in this course introduce a number of these topics and end with concrete guidance for participant consent and de-identification of data.

 
INCF TrainingSpace

Open Collaboration in Computational Neuroscience

INCF

Neuroscience has traditionally been a discipline where isolated labs have produced their own experimental data and created their own models to interpret their findings. However, it is becoming clear that no one lab can create cell and network models rich enough to address all the relevant biological questions, or to generate and analyse all the data required to inform, constrain, and test these models.

 

Introduction to Neurobiology for Non-Specialists

HBP Education Programme

The field of neuroscience is one of the most interdisciplinary scientific fields. It is constantly expanded and developed further and unites researchers from a vast variety of backgrounds such as chemistry, biology, physics, medicine, or psychology. By examining the principles that influence the development and function of the human nervous system, it advances the understanding of the fundamental mechanisms of human behaviour, emotions, and thoughts, and what happens if they fail.

 

Data Science and Neuroinformatics

INCF

Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools.

 

Fundamental Methods for Genomic Analysis

Krembil Centre for Neuroinformatics

This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.

 

Open Data in Neuroscience: Data Sharing in EBRAINS

Maaike van Swieten, Ida Aasebø, the EBRAINS curation services and HBP-EBRAINS

There is a broad consensus among researchers, publishers, and funding bodies that open sharing of data is needed to address major reproducibility and transparency challenges that currently exist in all scientific disciplines. In addition to potentially increasing the utilization of shared data through re-analysis and integration with other data, data sharing is beneficial for individual researchers through data citation and increased exposure of research.

 

Enabling Multi-Scale Data Integration: Turning Data to Knowledge

NFDI Neuroscience

This workshop is organized by the German National Research Data Infrastructure Initiative Neuroscience (NFDI-Neuro). The initiative is community driven and comprises around 50 contributing national partners and collaborators. NFDI-Neuro partners with EBRAINS AISB, the coordinating entity of the EU Human Brain Project and the EBRAINS infrastructure. We will introduce common methods that enable digital reproducible neuroscience.

 

INCF Assembly 2022 - Training Day 1

INCF

This course contains sessions from the first day of INCF's Neuroinformatics Assembly 2022.

 

INCF Assembly 2022 - Day 3 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 Day 3. 

VIEW THE PROGRAM

 

Versioning & Containerization

This course outlines how versioning code, data, and analysis software is crucially important to rigorous and open neuroscience workflows that maximize reproducibility and minimize errors.Version control systems, code-capable notebooks, and virtualization containers such as Git, Jupyter, and Docker, respectively, have become essential tools in data science.

 

The Future of Medical Data Sharing in Clinical Neurosciences

EBRAINS

This workshop hosted by HBP, EBRAINS, and the European Academy of Neurology (EAN) aimed to identify and openly discuss all issues and challenges associated with data sharing in Europe: from ethics to data safety and privacy including those specific to data federation such as the development and validation of federated algorithms. 

 

 
INCF TrainingSpace

Session 6: Research Workflows for Collaborative Neuroscience

INCF

This course contains videos, lectures, and hands-on tutorials as part of INCF's Neuroinformatics Assembly 2023 workshop on developing robust and reproducible research workflows to foster greater collaborative efforts in neuroscience.

 

Fundamental Methods for Single-Cell Transcriptome Analysis

Krembil Centre for Neuroinformatics

This course, consisting of one lecture and two workshops, is presented by the Computational Genomics Lab at the Centre for Addiction and Mental Health and University of Toronto. The lecture deals with single-cell and bulk level transciptomics, while the two hands-on workshops introduce users to transcriptomic data types (e.g., RNAseq) and how to perform analyses in specific use cases (e.g., cellular changes in major depression). 

 
INCF TrainingSpace

Session 8: FAIR Data: The Role of Journals

INCF

Most neuroscience journals request authors to make their data publicly available in appropriate repositories. The requirements and policies put forward by journals vary, and the services provided for different types of data also differ considerably across repositories.

 
INCF TrainingSpace

Deep Learning: Parameters Sharing

NYU Center for Data Science

This course covers the concepts of recurrent and convolutional nets (theory and practice), natural signals properties and the convolution, and recurrent neural networks (vanilla and gated, LSTM).

 

Cognitive Science and Psychology: Mind, Brain, and Behavior

NeurotechEU

This lecture series is presented by NeuroTechEU, an alliance between eight European universities with the goal to build a trans-European network of excellence in brain research and technologies. By following along with this series, participants will learn about the history of cognitive science and the development of the field in a sociocultural context, as well as its trajectory into the future with the advent of artificial intelligence and neural network development.

 
INCF TrainingSpace

Session 9: Event Annotation in Neuroimaging Using HED: From Experiment to Analysis

INCF

This workshop delves into the need for, structure of, tools for, and use of hierarchical event descriptor (HED) annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. HED are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding.