Skip to main content

INCF/OCNS Working Group on Computational Neuroscience Software

By
Level
Beginner

This working group is joint between OCNS and INCF. The group focuses on evaluating and testing computational neuroscience tools; finding them, testing them, learning how they work, and informing developers of issues to ensure that these tools remain in good shape by having communities looking after them. Since many members of the WG are themselves tool developers, we will also learn from each other and will work towards improving interoperability between related tools.

 

The working group has hosted a variety of recorded development sessions, each with the aim of demonstrating a different tool. More lessons will be added as the working group hosts more sessions.

 

The INCF/OCNS Working Group on Computational Neuroscience Software is active and soliciting new members.

Learn more

Lessons of this Course
1
1
Duration:
1:27:32

Demo of the BRIAN Simulator. BRIAN is a free, open source simulator for spiking neural networks. It is written in the Python programming language and is available on almost all platforms. We believe that a simulator should not only save the time of processors, but also the time of scientists. Brian is therefore designed to be easy to learn and use, highly flexible and easily extensible.

2
2
Duration:
1:06:08
Speaker:

NeuroFedora is a volunteer driven initiative to provide a ready to use Fedora based Free/Open Source Software platform for neuroscience. We believe that similar to Free Software, science should be free for all to use, share, modify, and study. The use of Free Software also aids reproducibility, data sharing, and collaboration in the research community. By making the tools used in the scientific process easier to use, NeuroFedora aims to take a step to enable this ideal. The CompNeuro Fedora Lab was specially to enable computational neuroscience. It includes everything you will need to get your work done—modelling software, analysis tools, general productivity tools—all well integrated with the modern GNOME platform to give you a complete operating system.

3
3
Duration:
1:06:53

neurolib is a computational framework for simulating coupled neural mass models written in Python. It helps you to easily load structural brain scan data to construct brain networks where each node is a neural mass representing a single brain area. This network model can be used to simulate whole-brain dynamics. neurolib provides a simulation and optimization framework which allows you to easily implement your own neural mass model, simulate fMRI BOLD activity, analyse the results and fit your model to empirical data.

4
4
Duration:
59:00

GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users.

5
5
Duration:
1:23:00