Skip to main content

This lesson continues with the second workshop on reproducible science, focusing on additional open source tools for researchers and data scientists, such as the R programming language for data science, as well as associated tools like RStudio and R Markdown. Additionally, users are introduced to Python and iPython notebooks, Google Colab, and are given hands-on tutorials on how to create a Binder environment, as well as various containers in Docker and Singularity.

Difficulty level: Beginner
Duration: 1:16:04

This talk goes over Neurobagel, an open-source platform developed for improved dataset sharing and searching. 

Difficulty level: Beginner
Duration: 13:37

In this lesson, you will learn about the BRAIN Initiative Cell Atlas Network (BICAN) and how this project adopts a federated approach to data sharing. 

Difficulty level: Beginner
Duration: 11:23
Speaker: : Owen White

In this second part of the lecture Data Science and Reproducibility, you will learn how to apply the awareness of the intersection between neuroscience and data science (discussed in part one) to an understanding of the current reproducibility crisis in biomedical science and neuroscience. 

Difficulty level: Beginner
Duration: 31:31
Speaker: : Ashley Juavinett

This lecture covers the benefits and difficulties involved when re-using open datasets, and how metadata is important to the process.

Difficulty level: Beginner
Duration: 11:20
Speaker: : Elizabeth DuPre

This lesson provides a quick tour of some data repositories and how to download and manipulate data from them.

Difficulty level: Beginner
Duration: 00:49:06
Speaker: : Sebastian Urchs
Course:

KnowledgeSpace (KS) is a data discoverability portal and neuroscience encyclopedia that was developed to make it easier for the neuroscience community to find publicly available datasets that adhere to the FAIR Principles and to provide an integrated view of neuroscience concepts found in Wikipedia and NeuroLex linked with PubMed and 17 of the world's leading neuroscience repositories. In short, KS provides a single point of entry where reseaerchers can search for a neuroscience concept of interest and receive results that include: i. a description of the term found in Wikipedia/NeuroLex, ii. links to publicly available datasets related to the concept of interest, and iii. up-to-date references that support the concept of interests found in PubMed. APIs are available so that developers of other neuroscience research infrastructures can integrate KS components in their infrastructures. If your repository or your favorite repository is not indexed in KS, please contact us.

 

Difficulty level: Beginner
Duration: 6:14
Speaker: : Heather Topple

In this lesson, attendees will learn about the data structure standards, specifically the Brain Imaging Data Structure (BIDS), an INCF-endorsed standard for organizing, annotating, and describing data collected during neuroimaging experiments. 

Difficulty level: Beginner
Duration: 21:56
Speaker: : Michael Schirner

This lecture presents the Medical Informatic Platform's data federation for Traumatic Brain Injury.

Difficulty level: Intermediate
Duration: 25:55
Speaker: : Stefano Finazzi

This lecture gives insights into the Medical Informatics Platform's current and future data privacy model.

Difficulty level: Intermediate
Duration: 17:29
Speaker: : Yannis Ioannidis

This lecture explains the concept of federated analysis in the context of medical data, associated challenges. The lecture also presents an example of hospital federations via the Medical Informatics Platform.

Difficulty level: Intermediate
Duration: 19:15
Speaker: : Yannis Ioannidis

This talk discusses what are usually considered successful outcomes of scientific research consortia, and how those outcomes can be translated into lasting impacts. 

Difficulty level: Beginner
Duration: 18:24
Speaker: : Anita Bandrowski

This talks presents an overview of the potential for data federation in stroke research.

Difficulty level: Intermediate
Duration: 21:37

This lecture explains the need for data federation in medicine and how it can be achieved.

Difficulty level: Intermediate
Duration: 27:09
Speaker: : Philippe Ryvlin

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram. 

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Mike X. Cohen

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons. 

Difficulty level: Intermediate
Duration: 13:48
Speaker: : Mike X. Cohen

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning. 

Difficulty level: Intermediate
Duration: 13:11
Speaker: : Mike X. Cohen