Overview of Day 2 of this course.
This talk compares various sensors and resolutions for in vivo neural recordings.
This hands-on tutorial explains how to run your own Minion session in the MetaCell cloud using jupityr notebooks.
In this hands-on analysis tutorial, users will mimic a kernel crash and learn the steps to restore inputs in such a case.
This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.
This lesson will go through how to extract cells from video that has been cleaned of background noise and motion.
This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.
This final hands-on analysis tutorial walks users through the last visualization steps in the cellular data.
This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.
In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.
This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.
This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.
This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.
This is a tutorial on how to simulate neuronal spiking in brain microcircuit models, as well as how to analyze, plot, and visualize the corresponding data.
This video will document the process of running an app on brainlife, from data staging to archiving of the final data outputs.
This quick video presents some of the various visualizers available on brainlife.io
This short video shows how a brainlife.io publication can be opened from the Data Deposition page of the journal Nature Scientific Data.
An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.