Overview of Day 2 of this course.
This talk compares various sensors and resolutions for in vivo neural recordings.
This hands-on tutorial explains how to run your own Minion session in the MetaCell cloud using jupityr notebooks.
In this hands-on analysis tutorial, users will mimic a kernel crash and learn the steps to restore inputs in such a case.
This lesson will go through how to extract cells from video that has been cleaned of background noise and motion.
This final hands-on analysis tutorial walks users through the last visualization steps in the cellular data.
This lecture covers visualizing extracellular neurotransmitter dynamics
This lecture provides an introduction to optogenetics, a biological technique to control the activity of neurons or other cell types with light.
This lecture covers infrared LED oblique illumination for studying neuronal circuits in in vitro block-preparations of the spinal cord and brain stem.
This lecture provides an introduction to the study of eye-tracking in humans.
This lecture provides an introduction to the analysis of Phase Separation at the Synapse.
This lecture covers the linking neuronal activity to behavior using AI-based online detection.
This lecture covers the application of diffusion MRI for clinical and preclinical studies.
This lecture provides an introduction to the application of genetic testing in neurodevelopmental disorders.
This lesson continues with the second workshop on reproducible science, focusing on additional open source tools for researchers and data scientists, such as the R programming language for data science, as well as associated tools like RStudio and R Markdown. Additionally, users are introduced to Python and iPython notebooks, Google Colab, and are given hands-on tutorials on how to create a Binder environment, as well as various containers in Docker and Singularity.
This lesson contains both a lecture and a tutorial component. The lecture (0:00-20:03 of YouTube video) discusses both the need for intersectional approaches in healthcare as well as the impact of neglecting intersectionality in patient populations. The lecture is followed by a practical tutorial in both Python and R on how to assess intersectional bias in datasets. Links to relevant code and data are found below.
In this lesson, while learning about the need for increased large-scale collaborative science that is transparent in nature, users also are given a tutorial on using Synapse for facilitating reusable and reproducible research.
This lesson describes not only the need for precision medicine, but also the current state of the methods, pharmacogenetic approaches, utility and implementation of such care today.
This lesson corresponds to slides 1-50 of the PowerPoint below.
This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines.
In this hands-on session, you will learn how to explore and work with DataLad datasets, containers, and structures using Jupyter notebooks.