Skip to main content

This lesson introduces the EEGLAB toolbox, as well as motivations for its use.

Difficulty level: Beginner
Duration: 15:32
Speaker: : Arnaud Delorme

In this lesson, you will learn about the biological activity which generates and is measured by the EEG signal.

Difficulty level: Beginner
Duration: 6:53
Speaker: : Arnaud Delorme

This lesson goes over the characteristics of EEG signals when analyzed in source space (as opposed to sensor space). 

Difficulty level: Beginner
Duration: 10:56
Speaker: : Arnaud Delorme

This lesson describes the development of EEGLAB as well as to what extent it is used by the research community.

Difficulty level: Beginner
Duration: 6:06
Speaker: : Arnaud Delorme

This lesson provides instruction as to how to build a processing pipeline in EEGLAB for a single participant. 

Difficulty level: Beginner
Duration: 9:20
Speaker: :

Whereas the previous lesson of this course outlined how to build a processing pipeline for a single participant, this lesson discusses analysis pipelines for multiple participants simultaneously. 

Difficulty level: Beginner
Duration: 10:55
Speaker: : Arnaud Delorme

In addition to outlining the motivations behind preprocessing EEG data in general, this lesson covers the first step in preprocessing data with EEGLAB, importing raw data. 

Difficulty level: Beginner
Duration: 8:30
Speaker: : Arnaud Delorme

Continuing along the EEGLAB preprocessing pipeline, this tutorial walks users through how to import data events as well as EEG channel locations.

Difficulty level: Beginner
Duration: 11:53
Speaker: : Arnaud Delorme

This tutorial demonstrates how to re-reference and resample raw data in EEGLAB, why such steps are important or useful in the preprocessing pipeline, and how choices made at this step may affect subsequent analyses.

Difficulty level: Beginner
Duration: 11:48
Speaker: : Arnaud Delorme

In this tutorial, users learn about the various filtering options in EEGLAB, how to inspect channel properties for noisy signals, as well as how to filter out specific components of EEG data (e.g., electrical line noise).

Difficulty level: Beginner
Duration: 10:46
Speaker: : Arnaud Delorme

This tutorial instructs users how to visually inspect partially pre-processed neuroimaging data in EEGLAB, specifically how to use the data browser to investigate specific channels, epochs, or events for removable artifacts, biological (e.g., eye blinks, muscle movements, heartbeat) or otherwise (e.g., corrupt channel, line noise). 

Difficulty level: Beginner
Duration: 5:08
Speaker: : Arnaud Delorme

This tutorial provides instruction on how to use EEGLAB to further preprocess EEG datasets by identifying and discarding bad channels which, if left unaddressed, can corrupt and confound subsequent analysis steps. 

Difficulty level: Beginner
Duration: 13:01
Speaker: : Arnaud Delorme

Users following this tutorial will learn how to identify and discard bad EEG data segments using the MATLAB toolbox EEGLAB. 

Difficulty level: Beginner
Duration: 11:25
Speaker: : Arnaud Delorme

This lecture gives an overview of how to prepare and preprocess neuroimaging (EEG/MEG) data for use in TVB.  

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

This module covers many of the types of non-invasive neurotech and neuroimaging devices including electroencephalography (EEG), electromyography (EMG), electroneurography (ENG), magnetoencephalography (MEG), and more. 

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning

Hierarchical Event Descriptors (HED) fill a major gap in the neuroinformatics standards toolkit, namely the specification of the nature(s) of events and time-limited conditions recorded as having occurred during time series recordings (EEG, MEG, iEEG, fMRI, etc.). Here, the HED Working Group presents an online INCF workshop on the need for, structure of, tools for, and use of HED annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. 

     

    Difficulty level: Beginner
    Duration: 03:37:42
    Speaker: :

    This lesson describes the current state of brain-computer interface (BCI) standards, including the present obstacles hindering the forward movement of BCI standardization as well as future steps aimed at solving this problem. 

    Difficulty level: Beginner
    Duration: 15:01

    This lecture covers the ethical implications of the use of brain-computer interfaces, brain-machine interfaces, and deep brain stimulation to enhance brain functions and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.

    Difficulty level: Beginner
    Duration: 1:02:00
    Speaker: : Jens Clausen
    Course:

     

    Panel discussion by leading scientists, engineers and philosophers discuss what brain-computer interfaces are and the unique scientific and ethical challenges they pose. hosted by Lynne Malcolm from ABC Radio National's All in the Mind program and features:

    • Dr Hannah Maslen, Deputy Director, Oxford Uehiro Centre for Practical Ethics, University of Oxford
    • Prof. Eric Racine, Director, Pragmatic Health Ethics Research Unity, Montreal Institute of Clinical Research
    • Prof Jeffrey Rosenfeld, Director, Monash Institute of Medical Engineering, Monash University
    • Dr Isabell Kiral-Kornek, AI and Life Sciences Researcher, IBM Research
    • A/Prof Adrian Carter, Neuroethics Program Coordinator, ARC Centre of Excellence for Integrative Brain Function

     

    Difficulty level: Intermediate
    Duration: 1:14:34

    In this module you will learn the basics of Brain Computer Interface (BCI). You will read an introduction to the different technologies available, the main components and steps required for BCI, associated safety and ethical issues, as well as an overview about the future of the field.

    Difficulty level: Beginner
    Duration: 11:02
    Speaker: : Colin Fausnaught