In this session, participants will take an in-depth look at the newly launched DMP Assistant 2.0, including all of its enhanced key features for both end-users and institutional administrators, as well as a brief look at the future of the platform.
This lesson provides a short overview of the main features of the Canadian Open Neuroscience Platform (CONP) Portal, a web interface that facilitates open science for the neuroscience community by simplifying global access to and sharing of datasets and tools. The Portal internalizes the typical cycle of a research project, beginning with data acquisition, followed by data processing with published tools, and ultimately the publication of results with a link to the original dataset.
This lecture discusses the challenges of protecting hospital data.
This lecture discusses differential privacy and synthetic data in the context of medical data sharing in clinical neurosciences.
Today’s (neuro)scientific computing landscape depends more than ever on selecting, combining, and implementing a range of tools and technologies for each specific use case. For decades, neuroscience users have turned to MATLAB as an integration environment for pioneering and innovative small-scale studies. This lesson consists of a brief talk outlining how MATLAB integrates with today's powerful tools and technologies.
This talk covers EBRAINS, an open research infrastructure that gathers data, tools and computing facilities for brain-related research, built with interoperability at the core.
In this lesson, attendees will learn about the data structure standards, specifically the Brain Imaging Data Structure (BIDS), an INCF-endorsed standard for organizing, annotating, and describing data collected during neuroimaging experiments.
This lesson discusses the need for and approaches to integrating data across the various temporal and spatial scales in which brain activity can be measured.
This lesson consists of lecture and tutorial components, focusing on resources and tools which facilitate multi-scale brain modeling and simulation.
In this talk, challenges of handling complex neuroscientific data are discussed, as well as tools and services for the annotation, organization, storage, and sharing of these data.
This lecture describes the neuroscience data respository G-Node Infrastructure (GIN), which provides platform independent data access and enables easy data publishing.
This lesson provides an introduction to the course Neuroscience Data Integration Through Use of Digital Brain Atlases, during which attendees will learn about concepts for integration of research data, approaches and resources for assigning anatomical location to brain data, and infrastructure for sharing experimental brain research data.
This talk covers the various concepts, motivations, and trends within the neuroscientific community related to the sharing and integration of brain research data.
This lesson focuses on the neuroanatomy of the human brain, delving into macrostructures like cortices, lobes, and hemispheres, and microstructures like neurons and cortical laminae.
This lesson provides an introduction to the European open research infrastructure EBRAINS and its digital brain atlas resources.
In this lesson, attendees will learn about the challenges in assigning experimental brain data to specific locations, as well as the advantages and shortcomings of current location assignment procedures.
This lesson covers the inherent difficulties associated with integrating neuroscientific data, as well as the current methods and approaches to do so.
Attendees of this talk will learn about QuickNII, a tool for user-guided affine registration of 2D experimental image data to 3D atlas reference spaces, which also facilitates data integration through standardized coordinate systems.
This lesson provides an overview of DeepSlice, a Python package which aligns histology to the Allen Brain Atlas and Waxholm Rat Atlas using deep learning.