Skip to main content

This presentation by the OHBM OpenScienceSIG covers common scenarios where Git can be extremely valuable. The essentials covered include cloning a repository and keeping it up to date, how to create and use your own repository, and how to contribute to other projects via forking and pull requests.

Difficulty level: Beginner
Duration: 51:55

DataLad is a versatile data management and data publication multi-tool. In this session, you can learn the basic concepts and commands for version control and reproducible data analysis. You’ll get to see, create, and install DataLad datasets of many shapes and sizes, master local version workflows and provenance-captured analysis-execution, and you will get ideas for your next data analysis project.

Difficulty level: Beginner
Duration: 01:29:08
Speaker: : Adina Wagner

While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time. 

Difficulty level: Intermediate
Duration: 4:48
Speaker: : Marcus Ghosh

In this lesson, you will learn about how machine learners and computational neuroscientists design and build models of neuronal synapses. 

Difficulty level: Intermediate
Duration: 8:59
Speaker: : Dan Goodman

How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.

Difficulty level: Beginner
Duration: 1:08:45
Speaker: : Clay Reid

This lesson goes into the mechanisms behind changes in synaptic function created by learning.

Difficulty level: Beginner
Duration: 27:07
Speaker: : Carl Petersen

This lecture discusses the the importance and need for data sharing in clinical neuroscience.

Difficulty level: Intermediate
Duration: 25:22
Speaker: : Thomas Berger

This lecture gives insights into the Medical Informatics Platform's current and future data privacy model.

Difficulty level: Intermediate
Duration: 17:29
Speaker: : Yannis Ioannidis

This lecture gives an overview on the European Health Dataspace. 

Difficulty level: Intermediate
Duration: 26:33

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This lesson contains the first part of the lecture Data Science and Reproducibility. You will learn about the development of data science and what the term currently encompasses, as well as how neuroscience and data science intersect. 

Difficulty level: Beginner
Duration: 32:18
Speaker: : Ariel Rokem

In this second part of the lecture Data Science and Reproducibility, you will learn how to apply the awareness of the intersection between neuroscience and data science (discussed in part one) to an understanding of the current reproducibility crisis in biomedical science and neuroscience. 

Difficulty level: Beginner
Duration: 31:31
Speaker: : Ashley Juavinett

In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience. 

Difficulty level: Beginner
Duration: 5:42
Speaker: : Dan Goodman

JupyterHub is a simple, highly extensible, multi-user system for managing per-user Jupyter Notebook servers, designed for research groups or classes. This lecture covers deploying JupyterHub on a single server, as well as deploying with Docker using GitHub for authentication.

Difficulty level: Beginner
Duration: 1:36:27
Speaker: : Thomas Kluyver

This demonstration walks through how to import your data into MATLAB.

Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This lesson provides instruction regarding the various factors one must consider when preprocessing data, preparing it for statistical exploration and analyses. 

Difficulty level: Beginner
Duration: 15:10
Speaker: : MATLAB®

This tutorial outlines, step by step, how to perform analysis by group and how to do change-point detection.

Difficulty level: Beginner
Duration: 2:49
Speaker: : MATLAB®

This tutorial walks through several common methods for visualizing your data in different ways depending on your data type.

Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.

Difficulty level: Beginner
Duration: 6:27
Speaker: : MATLAB®

This brief tutorial goes over how you can easily work with big data as you would with any size of data.

Difficulty level: Beginner
Duration: 3:55
Speaker: : MATLAB®