This talk enumerates the challenges regarding data accessibility and reusability inherent in the current scientific publication system, and discusses novel approaches to these challenges, such as the EBRAINS Live Papers platform.
This brief video gives an introduction to the eighth session of INCF's Neuroinformatics Assembly 2023, focusing on FAIR data and the role of academic journals.
This talk gives an overview of the perspectives and FAIR-aligned policies of the academic journal Public Library of Science, better known as PLOS. This journal is a nonprofit, open access publisher empowering researchers to accelerate progress in science.
This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research.
This lecture presents the Medical Informatic Platform's data federation for Traumatic Brain Injury.
This lecture gives insights into the Medical Informatics Platform's current and future data privacy model.
This lecture explains the concept of federated analysis in the context of medical data, associated challenges. The lecture also presents an example of hospital federations via the Medical Informatics Platform.
This talk discusses what are usually considered successful outcomes of scientific research consortia, and how those outcomes can be translated into lasting impacts.
In this lesson, you will learn about the BRAIN Initiative Cell Atlas Network (BICAN) and how this project adopts a federated approach to data sharing.
This talks presents an overview of the potential for data federation in stroke research.
This lecture explains the need for data federation in medicine and how it can be achieved.
This lesson provides an overview of how to construct computational pipelines for neurophysiological data using DataJoint.
This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models.
Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation.
This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted.
While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.
Whereas the previous two lessons described the biophysical and signalling properties of individual neurons, this lesson describes properties of those units when part of larger networks.
This lesson covers the ionic basis of the action potential, including the Hodgkin-Huxley model.
This lesson provides an introduction to the myriad forms of cellular mechanisms whicn underpin healthy brain function and communication.
In this lesson you will learn about the ionic basis of the action potential, including the Hodgkin-Huxley model.