Skip to main content

This is the first of two workshops on reproducibility in science, during which participants are introduced to concepts of FAIR and open science. After discussing the definition of and need for FAIR science, participants are walked through tutorials on installing and using Github and Docker, the powerful, open-source tools for versioning and publishing code and software, respectively.

Difficulty level: Intermediate
Duration: 1:20:58

In this lesson, while learning about the need for increased large-scale collaborative science that is transparent in nature, users also are given a tutorial on using Synapse for facilitating reusable and reproducible research. 

Difficulty level: Beginner
Duration: 1:15:12
Speaker: : Abhi Pratap

This lesson contains the first part of the lecture Data Science and Reproducibility. You will learn about the development of data science and what the term currently encompasses, as well as how neuroscience and data science intersect. 

Difficulty level: Beginner
Duration: 32:18
Speaker: : Ariel Rokem

In this second part of the lecture Data Science and Reproducibility, you will learn how to apply the awareness of the intersection between neuroscience and data science (discussed in part one) to an understanding of the current reproducibility crisis in biomedical science and neuroscience. 

Difficulty level: Beginner
Duration: 31:31
Speaker: : Ashley Juavinett

The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez

This lecture provides an introduction to reproducibility issues within the fields of neuroimaging and fMRI, as well as an overview of tools and resources being developed to alleviate the problem.

Difficulty level: Beginner
Duration: 1:03:07
Speaker: : Russell Poldrack

This lecture provides a historical perspective on reproducibility in science, as well as the current limitations of neuroimaging studies to date. This lecture also lays out a case for the use of meta-analyses, outlining available resources to conduct such analyses. 

Difficulty level: Beginner
Duration: 55:39
Speaker: : Angela Laird

This workshop will introduce reproducible workflows and a range of tools along the themes of organisation, documentation, analysis, and dissemination. 

Difficulty level: Beginner
Duration: 01:28:43
Speaker: :

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This tutorial walks participants through the application of dynamic causal modelling (DCM) to fMRI data using MATLAB. Participants are also shown various forms of DCM, how to generate and specify different models, and how to fit them to simulated neural and BOLD data.

 

This lesson corresponds to slides 158-187 of the PDF below. 

Difficulty level: Advanced
Duration: 1:22:10
Course:

The goal of computational modeling in behavioral and psychological science is using mathematical models to characterize behavioral (or neural) data. Over the past decade, this practice has revolutionized social psychological science (and neuroscience) by allowing researchers to formalize theories as constrained mathematical models and test specific hypotheses to explain unobservable aspects of complex social cognitive processes and behaviors. This course is composed of 4 modules in the format of Jupyter Notebooks. This course comprises lecture-based, discussion-based, and lab-based instruction. At least one-third of class sessions will be hands-on. We will discuss relevant book chapters and journal articles, and work with simulated and real data using the Python programming language (no prior programming experience necessary) as we survey some selected areas of research at the intersection of computational modeling and social behavior. These selected topics will span a broad set of social psychological abilities including (1) learning from and for others, (2) learning about others, and (3) social influence on decision-making and mental states. Rhoads, S. A. & Gan, L. (2022). Computational models of human social behavior and neuroscience - An open educational course and Jupyter Book to advance computational training.  ​​​Journal of Open Source Education5(47), 146. https://doi.org/10.21105/jose.00146

 

Difficulty level: Intermediate
Duration:
Speaker: :