Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level

INCF Assembly 2022 - Training Day 2

INCF

This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.

 

Simulating Brain Microcircuit Activity and Signals in Mental Health

Krembil Centre for Neuroinformatics

This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.

 
INCF TrainingSpace

Preprocessing Data in EEGLAB

Swartz Center for Computational Neuroscience

EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.

 

Module 5: Calcium Imaging

Mike X. Cohen

In this course, you will learn about working with calcium-imaging data, including image processing to remove background "blur", identifying cells based on threshold spatial contiguity, time-series filtering, and principal component analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

 
INCF TrainingSpace

Session 9: Event Annotation in Neuroimaging Using HED: From Experiment to Analysis

INCF

This workshop delves into the need for, structure of, tools for, and use of hierarchical event descriptor (HED) annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. HED are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding.

 

Cognitive Science and Psychology: Mind, Brain, and Behavior

NeurotechEU

This lecture series is presented by NeuroTechEU, an alliance between eight European universities with the goal to build a trans-European network of excellence in brain research and technologies. By following along with this series, participants will learn about the history of cognitive science and the development of the field in a sociocultural context, as well as its trajectory into the future with the advent of artificial intelligence and neural network development.

 

General Perspectives on FAIR

INCF

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible, Interoperable and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define.

 

Foundations of Data Science

Datalabcc

Data science relies on several important aspects of mathematics. In this course, you'll learn what forms of mathematics are most useful for data science, and see some worked examples of how math can solve important data science problems.

 

INCF Short Course: Introduction to Neuroinformatics

INCF

The emergence of data-intensive science creates a demand for neuroscience educators worldwide to deliver better neuroinformatics education and training in order to raise a generation of modern neuroscientists with FAIR capabilities, awareness of the value of standards and best practices, knowledge in dealing with big datasets, and the ability to integrate knowledge over multiple scales and methods.

 

Reproducible Science (Including Git, Docker, and Binder)

Krembil Centre for Neuroinformatics

This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R. 

 
INCF TrainingSpace

2021 Virtual Miniscope Workshop

MetaCell

A virtual workshop with lectures and hands-on tutorials that will teach participants how to use open-source Miniscopes for in vivo calcium imaging. This workshop is designed to introduce all aspects of using Miniscopes, including basic principles of Miniscope design and imaging, how to build and attach a Miniscope, how to implant a GRIN lens for imaging deep structures, and how to analyze imaging data.

 

INCF Assembly 2022 - Training Day 1

INCF

This course contains sessions from the first day of INCF's Neuroinformatics Assembly 2022.

 

Fundamental Methods for Single-Cell Transcriptome Analysis

Krembil Centre for Neuroinformatics

This course, consisting of one lecture and two workshops, is presented by the Computational Genomics Lab at the Centre for Addiction and Mental Health and University of Toronto. The lecture deals with single-cell and bulk level transciptomics, while the two hands-on workshops introduce users to transcriptomic data types (e.g., RNAseq) and how to perform analyses in specific use cases (e.g., cellular changes in major depression). 

 
INCF TrainingSpace

Session 3: Streamlining Cross-Platform Data Integration

INCF

This course corresponds to the third session of talks given at INCF's Neuroinformatics Assembly 2023. In this session, the talks revolve around the idea of cross-platform data integration, discussing processes and solutions for rapidly developing an integrated workflow across independent systems for the US BRAIN Initiative Cell Census. 

 

Simulating Brain Microcircuit Activity and Signals in Mental Health

Krembil Centre for Neuroinformatics

This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.

 

High-Performance Computing (HPC)

The dimensionality and size of datasets in many fields of neuroscience research require massively parallel computing power.  Fortunately, the maturity and accessibility of virtualization technologies has made it feasible to run the same analysis environments on platforms ranging from single laptop computers up to high-performance computing networks.

 

Versioning & Containerization

This course outlines how versioning code, data, and analysis software is crucially important to rigorous and open neuroscience workflows that maximize reproducibility and minimize errors.Version control systems, code-capable notebooks, and virtualization containers such as Git, Jupyter, and Docker, respectively, have become essential tools in data science.

 

Ethics and Governance

Ethical conduct of science, good governance of data, and accelerated translation to the clinic are key to high-calibre open neuroscience.  Everyday practitioners of science must be sensitized to a range of ethical considerations in their research, some having especially to do with open data-sharing. The lessons included in this course introduce a number of these topics and end with concrete guidance for participant consent and de-identification of data.

 

Using brainlife.io

brainlife.io

This course provides several visual walkthroughs documenting how to execute various processes in brainlife.io, an open-source, free and secure reproducible neuroscience analysis platform. The platform allows to analyze Magnetic Resonance Imaging (MRI), electroencephalography (EEG) and magnetoencephalography (MEG) data. Data can either be uploaded from local computers or imported from public archives such as OpenNeuro.org.

 

INCF Short Course: Introduction to Neuroinformatics

INCF

The emergence of data-intensive science creates a demand for neuroscience educators worldwide to deliver better neuroinformatics education and training in order to raise a generation of modern neuroscientists with FAIR capabilities, awareness of the value of standards and best practices, knowledge in dealing with big datasets, and the ability to integrate knowledge over multiple scales and methods.