In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.
This course provides introductory and refresher lessons for a range of concepts and methods useful in the field of neuroscience and neuroinformatics.
This short course covers Hypothes.is, an annotation tool that enables users to collaboratively annotate course readings and other internet resources.
Features of Hypothes.is:
In this course, you will learn about working with calcium-imaging data, including image processing to remove background "blur", identifying cells based on threshold spatial contiguity, time-series filtering, and principal component analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
The importance of Research Data Management in the conduct of open and reproducible science is better understood and technically supported than ever, and many of the underlying principles apply as much to everyday activities of a single researcher as to large-scale, multi-center open data sharing.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
The dimensionality and size of datasets in many fields of neuroscience research require massively parallel computing power. Fortunately, the maturity and accessibility of virtualization technologies has made it feasible to run the same analysis environments on platforms ranging from single laptop computers up to high-performance computing networks.
Difficulties experienced in understanding machine learning techniques often stem from lack of clarity concerning more basic statistical models and fundamental considerations, including the various regression models that can all be subsumed under the General Linear Model.
This course introduces researchers to the Brain Imaging Data Structure (BIDS), the official community standard for organizing and sharing PET data. BIDS simplifies collaboration, streamlines analysis, and ensures your research remains future-proof by enabling compatibility with an ever-growing ecosystem of open datasets and community-developed tools.
This course consists of two introductory lectures on different aspects of statistical models, in which you will learn about the neural coding problem, aspects of neural activity carry information, multiple spike train models, latent variable models, and regularization.
This workshop provides basic knowledge on personalized brain network modeling using the open-source simulation platform The Virtual Brain (TVB). Participants will gain theoretical knowledge and apply this knowledge to construct brain models, process multimodal neuroimaging data for reconstructing individual brains, run simulations, and use supporting neuroinformatics tools such as collaboratories, pipelines, workflows, and data repositories.
This is a freely available online course on neuroscience for people with a machine learning background. The aim is to bring together these two fields that have a shared goal in understanding intelligent processes. Rather than pushing for “neuroscience-inspired” ideas in machine learning, the idea is to broaden the conceptions of both fields to incorporate elements of the other in the hope that this will lead to new, creative thinking.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This course corresponds to the second session of INCF's Neuroinformatics Assembly 2023. This series of talks continues a discussion of FAIR principles from the first session, with a greater emphasis on brain data (humans and animals) atlases for data analysis and integation.
This workshop provides an opportunity to explore the advanced tools and techniques for data sharing, analysis, visualization, and simulation.
This course consists of several lightning talks from the second day of INCF's Neuroinformatics Assembly 2023. Covering a wide range of topics, these brief talks provide snapshots of various neuroinformatic efforts such as brain-computer interface standards, dealing with multimodal animal MRI datasets, distributed data management, and several more.
As research methods and experimental technologies become ever more sophisticated, the amount of health-related data per individual which has become accessible is vast, giving rise to a corresponding need for cross-domain data integration, whole-person modelling, and improved precision medicine. This course provides lessons describing state of the art methods and repositories, as well as a tutorial on computational methods for data integration.
As technological improvements continue to facilitate innovations in the mental health space, researchers and clinicians are faced with novel opportunities and challenges regarding study design, diagnoses, treatments, and follow-up care. This course includes a lecture outlining these new developments, as well as a workshop which introduces users to Synapse, an open-source platform for collaborative data analysis.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.