This working group is a collaboration between OCNS and INCF. The group focuses on evaluating and testing computational neuroscience tools; finding them, testing them, learning how they work, and informing developers of issues to ensure that these tools remain in good shape by having communities looking after them. Since many members of the WG are themselves tool developers, we will also learn from each other and will work towards improving interoperability between related tools.
In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.
Neuroanatomy provides one of the unifying frameworks for neuroscience and thus it is not surprising that it provides the basis for many neuroinformatics tools and approaches. Regardless of whether one is working at the subcellular, cellular or gross anatomical level or whether one is modeling circuitry, molecular pathways or function, at some point, this work will include an anatomical reference.
This course consists of several lightning talks from the second day of INCF's Neuroinformatics Assembly 2023. Covering a wide range of topics, these brief talks provide snapshots of various neuroinformatic efforts such as brain-computer interface standards, dealing with multimodal animal MRI datasets, distributed data management, and several more.
In this course, you will learn about working with calcium-imaging data, including image processing to remove background "blur", identifying cells based on threshold spatial contiguity, time-series filtering, and principal component analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
The workshop will include interactive seminars given by selected experts in the field covering all aspects of (FAIR) small animal MRI data acquisition, analysis, and sharing. The seminars will be followed by hands-on training where participants will perform use case scenarios using software established by the organizers. This will include an introduction to the basics of using command line interfaces, Python installation, working with Docker/Singularity containers, Datalad/Git, and BIDS.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R.
The importance of Research Data Management in the conduct of open and reproducible science is better understood and technically supported than ever, and many of the underlying principles apply as much to everyday activities of a single researcher as to large-scale, multi-center open data sharing.
Sessions from the INCF Neuroinformatics Assembly 2022 day 2.
The emergence of data-intensive science creates a demand for neuroscience educators worldwide to deliver better neuroinformatics education and training in order to raise a generation of modern neuroscientists with FAIR capabilities, awareness of the value of standards and best practices, knowledge in dealing with big datasets, and the ability to integrate knowledge over multiple scales and methods.
In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.
This course tackles the issue of maintaining ethical research and healthcare practices in the age of increasingly powerful technological tools like machine learning and artificial intelligence. While there is great potential for innovation and improvement in the clinical space thanks to AI development, lecturers in this course advocate for a greater emphasis on human-centric care, calling for algorithm design which takes the full intersectionality of individuals into account.
This course consists of 12 lectures on the visual system and neural coding produced by the Allen Institute for Brain Science. The lectures cover broad neurophysiological concepts such as information theory and the mammalian visual system, as well as more specific topics such as cell types and their functions in the mammalian retina.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
Sessions from the INCF Neuroinformatics Assembly 2022 day 2.
Sessions from the INCF Neuroinformatics Assembly 2022 day 2.
The Neurodata Without Borders: Neurophysiology project (NWB, https://www.nwb.org/) is an effort to standardize the description and storage of neurophysiology data and metadata. NWB enables data sharing and reuse and reduces the energy-barrier to applying data analytics both within and across labs. Several laboratories, including the Allen Institute for Brain Science, have wholeheartedly adopted NWB.