Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level

Notebooks

Notebook systems are proving invaluable to skill acquisition, research documentation, publication, and reproducibility.  This series of presentations introduces the most popular platform for computational notebooks, Project Jupyter, as well as other resources like Binder and NeuroLibre. 

 

Ethics and Governance

Ethical conduct of science, good governance of data, and accelerated translation to the clinic are key to high-calibre open neuroscience.  Everyday practitioners of science must be sensitized to a range of ethical considerations in their research, some having especially to do with open data-sharing. The lessons included in this course introduce a number of these topics and end with concrete guidance for participant consent and de-identification of data.

 

Ethics and Governance

Ethical conduct of science, good governance of data, and accelerated translation to the clinic are key to high-calibre open neuroscience.  Everyday practitioners of science must be sensitized to a range of ethical considerations in their research, some having especially to do with open data-sharing. The lessons included in this course introduce a number of these topics and end with concrete guidance for participant consent and de-identification of data.

 

Population-Based Data Resources & Integrative Research Methods

Krembil Centre for Neuroinformatics

As research methods and experimental technologies become ever more sophisticated, the amount of health-related data per individual which has become accessible is vast, giving rise to a corresponding need for cross-domain data integration, whole-person modelling, and improved precision medicine. This course provides lessons describing state of the art methods and repositories, as well as a tutorial on computational methods for data integration. 

 

INCF Short Course: Introduction to Neuroinformatics

INCF

The emergence of data-intensive science creates a demand for neuroscience educators worldwide to deliver better neuroinformatics education and training in order to raise a generation of modern neuroscientists with FAIR capabilities, awareness of the value of standards and best practices, knowledge in dealing with big datasets, and the ability to integrate knowledge over multiple scales and methods.

 

Fundamental Methods for Genomic Analysis

Krembil Centre for Neuroinformatics

This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.

 

Statistical Models

COSYNE

This course consists of two introductory lectures on different aspects of statistical models, in which you will learn about the neural coding problem, aspects of neural activity carry information, multiple spike train models, latent variable models, and regularization. 

 
INCF TrainingSpace

Deep Learning: Associative Memories

NYU Center for Data Science

This module covers the concept of associative memories in deep learning. It is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Introduction to Deep Learning (module 1 of the course), Parameter Sharing (module 2 of the course), 

 

GLM, Regression Models, and Latent Variables

Difficulties experienced in understanding machine learning techniques often stem from lack of clarity concerning more basic statistical models and fundamental considerations, including the various regression models that can all be subsumed under the General Linear Model.

 
INCF TrainingSpace

INCF Assembly 2023 - Lightning Talks (Day 1)

INCF

This course consists of three lessons, each corresponding to a lightning talk given at the first day of INCF's Neuroinformatics Assembly 2023. By following along these brief talks, you will hear about topics such as open source tools for computer vision, tools for the integration of various MRI dataset formats, as well as international data governance. 

 

The Virtual Brain (TVB) on EBRAINS

The Virtual Brain

In this course we present the TVB-EBRAINS integrated workflows that have been developed in the Human Brain Project in the third funding phase (“SGA2”) in the Co-Design Project 8 “The Virtual Brain”. 

 

R Programming Language

Edureka

This course includes two tutorials on R, a programming language and environment for statistical computing and graphics. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc.) and graphical techniques, and is highly extensible.

 
INCF TrainingSpace

Foundations of Neurotechnology

The BCI Guys

This course provides a broad, non-technical overview of the field of neurotechnology. It is intended to provide users with a fundamental understanding of how neurotechnology works.

 

INCF Assembly 2022 - Day 1 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 1. 

VIEW THE PROGRAM

 

Applied Ethics in Machine Learning and Mental Health

Krembil Centre for Neuroinformatics

This course tackles the issue of maintaining ethical research and healthcare practices in the age of increasingly powerful technological tools like machine learning and artificial intelligence. While there is great potential for innovation and improvement in the clinical space thanks to AI development, lecturers in this course advocate for a greater emphasis on human-centric care, calling for algorithm design which takes the full intersectionality of individuals into account.

 
INCF TrainingSpace

INCF Assembly 2023 - Lightning Talks (Day 2)

INCF

This course consists of several lightning talks from the second day of INCF's Neuroinformatics Assembly 2023. Covering a wide range of topics, these brief talks provide snapshots of various neuroinformatic efforts such as brain-computer interface standards, dealing with multimodal animal MRI datasets, distributed data management, and several more. 

 

Using brainlife.io

brainlife.io

This course provides several visual walkthroughs documenting how to execute various processes in brainlife.io, an open-source, free and secure reproducible neuroscience analysis platform. The platform allows to analyze Magnetic Resonance Imaging (MRI), electroencephalography (EEG) and magnetoencephalography (MEG) data. Data can either be uploaded from local computers or imported from public archives such as OpenNeuro.org.

 

INCF Assembly 2022 - Training Day 2

INCF

This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.

 

Fundamental Methods for Single-Cell Transcriptome Analysis

Krembil Centre for Neuroinformatics

This course, consisting of one lecture and two workshops, is presented by the Computational Genomics Lab at the Centre for Addiction and Mental Health and University of Toronto. The lecture deals with single-cell and bulk level transciptomics, while the two hands-on workshops introduce users to transcriptomic data types (e.g., RNAseq) and how to perform analyses in specific use cases (e.g., cellular changes in major depression). 

 
INCF TrainingSpace

Deep Learning: Optimization

NYU Center for Data Science

This module covers the concepts of gradient descent, stochastic gradient descent, and momentum. It is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for