Skip to main content

This lecture covers the linking neuronal activity to behavior using AI-based online detection. 

Difficulty level: Beginner
Duration: 30:39

This lesson gives an in-depth introduction of ethics in the field of artificial intelligence, particularly in the context of its impact on humans and public interest. As the healthcare sector becomes increasingly affected by the implementation of ever stronger AI algorithms, this lecture covers key interests which must be protected going forward, including privacy, consent, human autonomy, inclusiveness, and equity. 

Difficulty level: Beginner
Duration: 1:22:06
Speaker: : Daniel Buchman

This lecture provides an introduction to the course "Cognitive Science & Psychology: Mind, Brain, and Behavior".

Difficulty level: Beginner
Duration: 1:06:49

This lecture goes into further detail about the hard problem of developing a scientific discipline for subjective consciousness.

Difficulty level: Beginner
Duration: 58:03

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

This brief talk goes into work being done at The Alan Turing Institute to solve real-world challenges and democratize computer vision methods to support interdisciplinary and international researchers. 

Difficulty level: Beginner
Duration: 7:10

In this final lecture of the INCF Short Course: Introduction to Neuroinformatics, you will hear about new advances in the application of machine learning methods to clinical neuroscience data. In particular, this talk discusses the performance of SynthSeg, an image segmentation tool for automated analysis of highly heterogeneous brain MRI clinical scans.

Difficulty level: Intermediate
Duration: 1:32:01
Course:

This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.

 

Difficulty level: Intermediate
Duration:
Speaker: :

This short talk addresses how to use VisuAlign to make nonlinear adjustments to 2D-to-3D registrations generated by QuickNII. 

Difficulty level: Beginner
Duration: 08:50
Speaker: : Maja Puchades

This talk aims to provide guidance regarding the myriad labelling methods for histological image data. 

Difficulty level: Beginner
Duration: 35:20
Speaker: : Sharon Yates

This lesson provides a cross-species comparison of neuron types in the rat and mouse brain. 

Difficulty level: Beginner
Duration: 17:16

This lecture concludes the course with an outline of future directions of the field of neuroscientific research data integration. 

Difficulty level: Beginner
Duration: 09:49
Speaker: : Jan G. Bjaalie

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics. 

Difficulty level: Intermediate
Duration: 1:27:18
Speaker: : Dan Felsky

This lesson is an overview of transcriptomics, from fundamental concepts of the central dogma and RNA sequencing at the single-cell level, to how genetic expression underlies diversity in cell phenotypes. 

Difficulty level: Intermediate
Duration: 1:29:08

In this lesson, you will learn about data management within the Open Data Commons (ODC) framework, and in particular, how Spinal Cord Injury (SCI) data is stored, shared, and published. You will also hear about Frictionless Data, an open-source toolkit aimed at simplifying the data experience. 

Difficulty level: Beginner
Duration: 19:10

This talk describes the NIH-funded SPARC Data Structure, and how this project navigates ontology development while keeping in mind the FAIR science principles. 

Difficulty level: Beginner
Duration: 25:44
Speaker: : Fahim Imam

This talk goes over Neurobagel, an open-source platform developed for improved dataset sharing and searching. 

Difficulty level: Beginner
Duration: 13:37

This video gives a brief introduction to the second session of talks from INCF's Neuroinformatics Assembly 2023. 

Difficulty level: Beginner
Duration: 3:55
Speaker: : Trygve Leergard

This brief video provides an introduction to the third session of INCF's Neuroinformatics Assembly 2023, focusing on how to streamling cross-platform data integration in a neuroscientific context. 

Difficulty level: Beginner
Duration: 5:55
Speaker: : Bing-Xing Huo

In this talk, you will learn about the standardization schema for data formats among two of the US BRAIN Initiative networks: the Cell Census Network (BICCN) and the Cell Atlas Network (BICAN). 

Difficulty level: Beginner
Duration: 14:58