Skip to main content

In this hands-on session, you will learn how to explore and work with DataLad datasets, containers, and structures using Jupyter notebooks. 

Difficulty level: Beginner
Duration: 58:05

This video will document the process of launching a Jupyter Notebook for group-level analyses directly from brainlife.

Difficulty level: Intermediate
Duration: 0:53
Speaker: :
Course:

This lesson consists of a talk about the history and future of academic publishing and the need for transparency, as well as a live demo of an alpha version of NeuroLibre, a preprint server that goes beyond the PDF to complement research articles. This video was part of a virutal QBIN SciComm seminar.

Difficulty level: Beginner
Duration: 00:53:35

This lecture covers the three big questions: What is the universe?, what is life?, and what is consciousness?

Difficulty level: Beginner
Duration: 1:07:52

This lecture outlines various approaches to studying Mind, Brain, and Behavior. 

Difficulty level: Beginner
Duration: 1:02:34

This lecture covers the history of behaviorism and the ultimate challenge to behaviorism. 

Difficulty level: Beginner
Duration: 1:19:08

This lecture covers various learning theories.

Difficulty level: Beginner
Duration: 1:00:42
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman
Course:

The goal of computational modeling in behavioral and psychological science is using mathematical models to characterize behavioral (or neural) data. Over the past decade, this practice has revolutionized social psychological science (and neuroscience) by allowing researchers to formalize theories as constrained mathematical models and test specific hypotheses to explain unobservable aspects of complex social cognitive processes and behaviors. This course is composed of 4 modules in the format of Jupyter Notebooks. This course comprises lecture-based, discussion-based, and lab-based instruction. At least one-third of class sessions will be hands-on. We will discuss relevant book chapters and journal articles, and work with simulated and real data using the Python programming language (no prior programming experience necessary) as we survey some selected areas of research at the intersection of computational modeling and social behavior. These selected topics will span a broad set of social psychological abilities including (1) learning from and for others, (2) learning about others, and (3) social influence on decision-making and mental states. Rhoads, S. A. & Gan, L. (2022). Computational models of human social behavior and neuroscience - An open educational course and Jupyter Book to advance computational training.  ​​​Journal of Open Source Education5(47), 146. https://doi.org/10.21105/jose.00146

 

Difficulty level: Intermediate
Duration:
Speaker: :

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices. 

Difficulty level: Intermediate
Duration: 1:39:04

In this lightning talk, you will learn about BrainGlobe, an initiative which exists to facilitate the development of interoperable Python-based tools for computational neuroanatomy.

Difficulty level: Beginner
Duration: 3:33

In this short talk you will learn about The Neural System Laboratory, which aims to develop and implement new technologies for analysis of brain architecture, connectivity, and brain-wide gene and molecular level organization.

Difficulty level: Beginner
Duration: 8:38
Speaker: : Trygve Leergard

In this lecture, you will learn about current methods, approaches, and challenges to studying human neuroanatomy, particularly through the lense of neuroimaging data such as fMRI and diffusion tensor imaging (DTI). 

Difficulty level: Intermediate
Duration: 1:35:14
Speaker: : Matt Glasser

This video demonstrates each required step for preprocessing T1w anatomical data in brainlife.io.

Difficulty level: Beginner
Duration: 3:28
Speaker: :

This lesson delves into the human nervous system and the immense cellular, connectomic, and functional sophistication therein. 

Difficulty level: Intermediate
Duration: 8:41
Speaker: : Marcus Ghosh

This lecture provides an introduction to the principal of anatomical organization of neural systems in the human brain and spinal cord that mediate sensation, integrate signals, and motivate behavior.

Difficulty level: Beginner
Duration: 59:57

This lecture focuses on the comprehension of nociception and pain sensation, highlighting how the somatosensory system and different molecular partners are involved in nociception.

Difficulty level: Beginner
Duration: 28:09
Speaker: : Serena Quarta

From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.

Difficulty level: Beginner
Duration: 56:31
Speaker: : Clay Reid

From Universal Turing Machines to McCulloch-Pitts and Hopfield associative memory networks, this lecture explains what is meant by computation.

Difficulty level: Beginner
Duration: 55:27
Speaker: : Christof Koch

In an overview of the structure of the mammalian neocortex, this lecture explains how the mammalian cortex is organized in a hierarchy, describing the columnar principle and canonical microcircuits.

Difficulty level: Beginner
Duration: 1:02:02
Speaker: : Clay Reid