This lecture covers the history of behaviorism and the ultimate challenge to behaviorism.
In this lesson, you will learn how to utilize various features and tools included in the EBRAINS platform, particularly focusing on rodent brain atlases and how to incorporate them into your analyses.
This talk describes how to use DataLad for your data management and curation techniques when dealing with animal datasets, which often contain several disparate types of data, including MRI, microscopy, histology, electrocorticography, and behavioral measurements.
In this short talk you will learn about The Neural System Laboratory, which aims to develop and implement new technologies for analysis of brain architecture, connectivity, and brain-wide gene and molecular level organization.
In this lesson, you will learn about the connectome, the collective system of neural pathways in an organism, with a closer look at the neurons, synapses, and connections of particular species.
This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system.
In this lecture, attendees will learn how Mutant Mouse Resource and Research Center (MMRRC) archives, cryopreserves, and distributes scientifically valuable genetically engineered mouse strains and mouse ES cell lines for the genetics and biomedical research community.
This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.
This lecture covers visualizing extracellular neurotransmitter dynamics
This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted.
This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page.
This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication?
This lecture consists of the second half of the introduction to signal transduction, here focusing on cell receptors and signalling cascades.
In this lesson, you will learn about GABAergic interneurons and local inhibition on the circuit level.
This lesson provides an overview of how to construct computational pipelines for neurophysiological data using DataJoint.
This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models.
Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation.
While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.
Whereas the previous two lessons described the biophysical and signalling properties of individual neurons, this lesson describes properties of those units when part of larger networks.
This lesson covers the ionic basis of the action potential, including the Hodgkin-Huxley model.