Skip to main content

This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.

Difficulty level: Beginner
Duration: 6:27
Speaker: : MATLAB®

This brief tutorial goes over how you can easily work with big data as you would with any size of data.

Difficulty level: Beginner
Duration: 3:55
Speaker: : MATLAB®

In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.

Difficulty level: Beginner
Duration: 3:52
Speaker: : MATLAB®

This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

This tutorial provides instruction on how to interact with and leverage Python packages to get the most out of Python's suite of available tools for the manipulation, management, analysis, and visualization of neuroscientific data. 

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Ariel Rokem

This tutorial teaches users how to use Pandas objects to help store and manipulate various datasets in Python. 

Difficulty level: Beginner
Duration: 1:21:40
Speaker: : Tal Yarkoni
Course:

In this lesson, users can follow along as a spaghetti script written in MATLAB is turned into understandable and reusable code living happily in a powerful GitHub repository.

Difficulty level: Beginner
Duration: 2:08:19
Speaker: : Agah Karakuzu
Course:

This lesson gives a quick walkthrough the Tidyverse, an "opinionated" collection of R packages designed for data science, including the use of readr, dplyr, tidyr, and ggplot2.

Difficulty level: Beginner
Duration: 1:01:39
Speaker: : Thomas Mock
Course:

This lesson gives a general introduction to the essentials of navigating through a Bash terminal environment.  The lesson is based on the Software Carpentries "Introduction to the Shell" and was given in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 1:12:22
Speaker: : Ross Markello
Course:

This lesson covers Python applications to data analysis, demonstrating why it has become ubiquitous in data science and neuroscience. The lesson was given in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 2:38:45
Speaker: : Ross Markello

This lecture presents the Medical Informatic Platform's data federation for Traumatic Brain Injury.

Difficulty level: Intermediate
Duration: 25:55
Speaker: : Stefano Finazzi

This lecture gives insights into the Medical Informatics Platform's current and future data privacy model.

Difficulty level: Intermediate
Duration: 17:29
Speaker: : Yannis Ioannidis

This lecture explains the concept of federated analysis in the context of medical data, associated challenges. The lecture also presents an example of hospital federations via the Medical Informatics Platform.

Difficulty level: Intermediate
Duration: 19:15
Speaker: : Yannis Ioannidis

This talk discusses what are usually considered successful outcomes of scientific research consortia, and how those outcomes can be translated into lasting impacts. 

Difficulty level: Beginner
Duration: 18:24
Speaker: : Anita Bandrowski

In this lesson, you will learn about the BRAIN Initiative Cell Atlas Network (BICAN) and how this project adopts a federated approach to data sharing. 

Difficulty level: Beginner
Duration: 11:23
Speaker: : Owen White

This talks presents an overview of the potential for data federation in stroke research.

Difficulty level: Intermediate
Duration: 21:37

This lecture explains the need for data federation in medicine and how it can be achieved.

Difficulty level: Intermediate
Duration: 27:09
Speaker: : Philippe Ryvlin