This lecture provides an introductory overview of some of the most important concepts in software engineering.
In this lesson, you will learn in more detail about neuromorphic computing, that is, non-standard computational architectures that mimic some aspect of the way the brain works.
This video provides a very quick introduction to some of the neuromorphic sensing devices, and how they offer unique, low-power applications.
This lecture provides an introduction to optogenetics, a biological technique to control the activity of neurons or other cell types with light.
This primer on optogenetics primer discusses how to manipulate neuronal populations with light at millisecond resolution and offers possible applications such as curing the blind and "playing the piano" with cortical neurons.
While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.
In this lesson, you will learn about how machine learners and computational neuroscientists design and build models of neuronal synapses.
How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.
This lesson goes into the mechanisms behind changes in synaptic function created by learning.