Skip to main content
Course:

This session provides users with an introduction to tools and resources that facilitate the implementation of FAIR in their research.

 

 

Difficulty level: Beginner
Duration: 38:36

This video gives a short introduction to the EBRAINS data sharing platform, why it was developed, and how it contributes to open data sharing.

Difficulty level: Beginner
Duration: 17:32
Speaker: : Ida Aasebø

This video explains what metadata is, why it is important, and how you can organize your metadata to increase the FAIRness of your data on EBRAINS.

Difficulty level: Beginner
Duration: 17:23
Speaker: : Ulrike Schlegel

This video introduces the importance of writing a Data Descriptor to accompany your dataset on EBRAINS. It gives concrete examples on what information to include and highlights how this makes your data more FAIR.

Difficulty level: Beginner
Duration: 9:48
Speaker: : Ingrid Reiten
Course:

KnowledgeSpace (KS) is a data discoverability portal and neuroscience encyclopedia that was developed to make it easier for the neuroscience community to find publicly available datasets that adhere to the FAIR Principles and to provide an integrated view of neuroscience concepts found in Wikipedia and NeuroLex linked with PubMed and 17 of the world's leading neuroscience repositories. In short, KS provides a single point of entry where reseaerchers can search for a neuroscience concept of interest and receive results that include: i. a description of the term found in Wikipedia/NeuroLex, ii. links to publicly available datasets related to the concept of interest, and iii. up-to-date references that support the concept of interests found in PubMed. APIs are available so that developers of other neuroscience research infrastructures can integrate KS components in their infrastructures. If your repository or your favorite repository is not indexed in KS, please contact us.

 

Difficulty level: Beginner
Duration: 6:14
Speaker: : Heather Topple

In this lesson, users will learn about the importance of proper citation of software resources and tools used in neuroscientific research. 

Difficulty level: Beginner
Duration: 58:00

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible, Interoperable and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry and publishers through our programs and networks.

 

Difficulty level: Beginner
Duration: 1:28

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page. 

Difficulty level: Intermediate
Duration: 12:50
Speaker: : Dan Goodman

This lesson provides a brief introduction to the Computational Modeling of Neuronal Plasticity.

Difficulty level: Intermediate
Duration: 0:40

In this lesson, you will be introducted to a type of neuronal model known as the leaky integrate-and-fire (LIF) model.

Difficulty level: Intermediate
Duration: 1:23

This lesson goes over various potential inputs to neuronal synapses, loci of neural communication.

Difficulty level: Intermediate
Duration: 1:20

This lesson describes the how and why behind implementing integration time steps as part of a neuronal model.

Difficulty level: Intermediate
Duration: 1:08

In this lesson, you will learn about neural spike trains which can be characterized as having a Poisson distribution.

Difficulty level: Intermediate
Duration: 1:18

This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.

Difficulty level: Intermediate
Duration: 1:26

This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.

Difficulty level: Intermediate
Duration: 0:42

In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 2:40

This lesson reviews theoretical and mathematical descriptions of correlated spike trains.

Difficulty level: Intermediate
Duration: 2:54

This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 1:43

This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.

Difficulty level: Intermediate
Duration: 2:58

In this lesson, you will learn about the intrinsic plasticity of single neurons.

Difficulty level: Intermediate
Duration: 2:08