This lecture presents the Medical Informatic Platform's data federation for Traumatic Brain Injury.
This lecture gives insights into the Medical Informatics Platform's current and future data privacy model.
This lecture explains the concept of federated analysis in the context of medical data, associated challenges. The lecture also presents an example of hospital federations via the Medical Informatics Platform.
This talks presents an overview of the potential for data federation in stroke research.
This lecture explains the need for data federation in medicine and how it can be achieved.
This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication?
This lesson provides an overview of Neurodata Without Borders (NWB), an ecosystem for neurophysiology data standardization. The lecture also introduces some NWB-enabled tools.
Learn how to create a standard extracellular electrophysiology dataset in NWB using Python.
Learn how to create a standard calcium imaging dataset in NWB using Python.
In this tutorial, you will learn how to create a standard intracellular electrophysiology dataset in NWB using Python.
In this tutorial, you will learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm.
This lesson provides instructions on how to build and share extensions in NWB.
Learn how to build custom APIs for extension.
This lesson provides instruction on advanced writing strategies in HDF5 that are accessible through PyNWB.
In this tutorial, users learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB.
Learn how to create a standard calcium imaging dataset in NWB using MATLAB.
Learn how to create a standard intracellular electrophysiology dataset in NWB.
This lesson provides a tutorial on how to handle writing very large data in MatNWB.
This lesson gives an overview of the Brainstorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition.
This lesson provides an overview of the CaImAn package, as well as a demonstration of usage with NWB.