This lecture covers the linking neuronal activity to behavior using AI-based online detection.
This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course.
This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.
This video briefly goes over the exercises accompanying Week 6 of the Neuroscience for Machine Learners (Neuro4ML) course, Understanding Neural Networks.
This lesson gives an introduction to the central concepts of machine learning, and how they can be applied in Python using the scikit-learn package.
This lesson provides a hands-on, Jupyter-notebook-based tutorial to apply machine learning in Python to brain-imaging data.
This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.
This is a tutorial on how to simulate neuronal spiking in brain microcircuit models, as well as how to analyze, plot, and visualize the corresponding data.
This video will document the process of running an app on brainlife, from data staging to archiving of the final data outputs.
This quick video presents some of the various visualizers available on brainlife.io
This short video shows how a brainlife.io publication can be opened from the Data Deposition page of the journal Nature Scientific Data.
An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.