Skip to main content

This lecture covers the linking neuronal activity to behavior using AI-based online detection. 

Difficulty level: Beginner
Duration: 30:39

This lesson gives an in-depth introduction of ethics in the field of artificial intelligence, particularly in the context of its impact on humans and public interest. As the healthcare sector becomes increasingly affected by the implementation of ever stronger AI algorithms, this lecture covers key interests which must be protected going forward, including privacy, consent, human autonomy, inclusiveness, and equity. 

Difficulty level: Beginner
Duration: 1:22:06
Speaker: : Daniel Buchman

This lesson describes a definitional framework for fairness and health equity in the age of the algorithm. While acknowledging the impressive capability of machine learning to positively affect health equity, this talk outlines potential (and actual) pitfalls which come with such powerful tools, ultimately making the case for collaborative, interdisciplinary, and transparent science as a way to operationalize fairness in health equity. 

Difficulty level: Beginner
Duration: 1:06:35
Speaker: : Laura Sikstrom

Introduction of the Foundations of Machine Learning in Python course - Day 01.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Beginner
Duration: 35:24
Speaker: : Elena Trunz

This lesson gives a brief introduction to the course Neuroscience for Machine Learners (Neuro4ML). 

Difficulty level: Beginner
Duration: 1:25
Speaker: : Dan Goodman

This lesson covers the history of neuroscience and machine learning, and the story of how these two seemingly disparate fields are increasingly merging. 

Difficulty level: Beginner
Duration: 12:25
Speaker: : Dan Goodman

In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience. 

Difficulty level: Beginner
Duration: 5:42
Speaker: : Dan Goodman

This lesson provides an overview of self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.

Difficulty level: Beginner
Duration: 25:50
Speaker: : Eva Dyer

As a part of NeuroHackademy 2020, Elizabeth DuPre gives a lecture on "Nilearn", a python package that provides flexible statistical and machine-learning tools for brain volumes by leveraging the scikit-learn Python toolbox for multivariate statistics.  This includes predictive modelling, classification, decoding, and connectivity analysis.

 

This video is courtesy of the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 01:49:18
Speaker: : Elizabeth DuPre

This lesson provides a conceptual overview of the rudiments of machine learning, including its bases in traditional statistics and the types of questions it might be applied to. The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:22:18
Speaker: : Estefany Suárez

This lesson provides a hands-on, Jupyter-notebook-based tutorial to apply machine learning in Python to brain-imaging data.

Difficulty level: Beginner
Duration: 02:13:53
Speaker: : Jake Vogel

This lesson presents advanced machine learning algorithms for neuroimaging, while addressing some real-world considerations related to data size and type.

Difficulty level: Beginner
Duration: 01:17:14
Speaker: : Gael Varoquaux

This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.

Difficulty level: Beginner
Duration: 02:09:22
Speaker: :

In this lecture, attendees will learn about the opportunities and challenges associated with Recurrent Neural Networks (RNNs), which, when trained with machine learning techniques on cognitive tasks, have become a widely accepted tool for neuroscientists.

Difficulty level: Beginner
Duration: 00:51:12

This lesson provides an introduction the International Neuroinformatics Coordinating Facility (INCF), its mission towards FAIR neuroscience, and future directions. 

Difficulty level: Beginner
Duration: 20:29
Speaker: : Maryann Martone

In this talk, you will learn about the standardization schema for data formats among two of the US BRAIN Initiative networks: the Cell Census Network (BICCN) and the Cell Atlas Network (BICAN). 

Difficulty level: Beginner
Duration: 14:58

This talk discusses what are usually considered successful outcomes of scientific research consortia, and how those outcomes can be translated into lasting impacts. 

Difficulty level: Beginner
Duration: 18:24
Speaker: : Anita Bandrowski

This final lesson of the course consists of the panel discussion for Streamlining Cross-Platform Data Integration session during the first day of INCF's Neuroinformatics Assembly 2023. 

Difficulty level: Beginner
Duration: 50:16
Speaker: :

This brief talk describes the challenge of global data sharing and governance, as well as efforts of the the Brain Research International Data Governance & Exchange (BRIDGE) to develop ready-made workflows to share data globally. 

Difficulty level: Beginner
Duration: 6:47
Speaker: : Kimberly Ray

This lesson is the first part of a three-part series on the development of neuroinformatic infrastructure to ensure compliance with European data privacy standards and laws. 

Difficulty level: Beginner
Duration: 1:10:05
Speaker: : Michael Schirner