Skip to main content

This lecture provides an introductory overview of some of the most important concepts in software engineering.

Difficulty level: Beginner
Duration: 32:59
Speaker: : Jeff Muller

This lecture covers advanced concept of energy based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models IEnergy-Based Models II, Energy-Based Models III, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Beginner
Duration: 56:41
Speaker: : Alfredo Canziani

This lesson gives an introduction to deep learning, with a perspective via inductive biases and emphasis on correctly matching deep learning to the right research questions.

Difficulty level: Beginner
Duration: 01:35:12
Speaker: : Blake Richards

As a part of NeuroHackademy 2021, Noah Benson gives an introduction to Pytorch, one of the two most common software packages for deep learning applications to the neurosciences.

Difficulty level: Beginner
Duration: 00:50:40
Speaker: :

Learn how to use TensorFlow 2.0 in this full tutorial for beginners. This course is designed for Python programmers looking to enhance their knowledge and skills in machine learning and artificial intelligence.

 

Throughout the 8 modules in this course you will learn about fundamental concepts and methods in ML & AI like core learning algorithms, deep learning with neural networks, computer vision with convolutional neural networks, natural language processing with recurrent neural networks, and reinforcement learning.

Difficulty level: Beginner
Duration: 06:52:07
Speaker: :

In this hands-on tutorial, Dr. Robert Guangyu Yang works through a number of coding exercises to see how RNNs can be easily used to study cognitive neuroscience questions, with a quick demonstration of how we can train and analyze RNNs on various cognitive neuroscience tasks. Familiarity of Python and basic knowledge of Pytorch are assumed.

Difficulty level: Beginner
Duration: 00:26:38
Speaker: :

This presentation by the OHBM OpenScienceSIG covers common scenarios where Git can be extremely valuable. The essentials covered include cloning a repository and keeping it up to date, how to create and use your own repository, and how to contribute to other projects via forking and pull requests.

Difficulty level: Beginner
Duration: 51:55

DataLad is a versatile data management and data publication multi-tool. In this session, you can learn the basic concepts and commands for version control and reproducible data analysis. You’ll get to see, create, and install DataLad datasets of many shapes and sizes, master local version workflows and provenance-captured analysis-execution, and you will get ideas for your next data analysis project.

Difficulty level: Beginner
Duration: 01:29:08
Speaker: : Adina Wagner

This lesson contains both a lecture and a tutorial component. The lecture (0:00-20:03 of YouTube video) discusses both the need for intersectional approaches in healthcare as well as the impact of neglecting intersectionality in patient populations. The lecture is followed by a practical tutorial in both Python and R on how to assess intersectional bias in datasets. Links to relevant code and data are found below. 

Difficulty level: Beginner
Duration: 52:26

This talk enumerates the challenges regarding data accessibility and reusability inherent in the current scientific publication system, and discusses novel approaches to these challenges, such as the EBRAINS Live Papers platform. 

Difficulty level: Beginner
Duration: 18:08
Speaker: : Andrew Davison

This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects. 

Difficulty level: Beginner
Duration: 59:21
Speaker: : Alla Borisyuk

This lesson covers membrane potential of neurons, and how parameters around this potential have direct consequences on cellular communication at both the individual and population level. 

Difficulty level: Beginner
Duration: 28:08
Speaker: : Carl Petersen

In this lesson you will learn about neurons' ability to generate signals called action potentials, and biophysics of voltage-gated ion channels.

Difficulty level: Beginner
Duration: 27:47
Speaker: : Carl Petersen

This lesson discusses voltage-gating kinetics of sodium and potassium channels.

Difficulty level: Beginner
Duration: 19:20
Speaker: : Carl Petersen

In this lesson, you will learn about the ionic basis of the action potential, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

This lesson delves into the specifics of how action potentials propagate through individual neurons.

Difficulty level: Beginner
Duration: 23:16
Speaker: : Carl Petersen

This lesson discusses long-range inhibitory connections in the brain, with examples from three different systems.

Difficulty level: Beginner
Duration: 19:05
Speaker: : Carl Petersen
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

This lecture covers visualizing extracellular neurotransmitter dynamics

Difficulty level: Beginner
Duration: 23:20

This lecture consists of the second half of the introduction to signal transduction, here focusing on cell receptors and signalling cascades.

Difficulty level: Beginner
Duration: 41:38