Skip to main content

This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects. 

Difficulty level: Beginner
Duration: 59:21
Speaker: : Alla Borisyuk

This lesson covers membrane potential of neurons, and how parameters around this potential have direct consequences on cellular communication at both the individual and population level. 

Difficulty level: Beginner
Duration: 28:08
Speaker: : Carl Petersen

In this lesson you will learn about neurons' ability to generate signals called action potentials, and biophysics of voltage-gated ion channels.

Difficulty level: Beginner
Duration: 27:47
Speaker: : Carl Petersen

This lesson discusses voltage-gating kinetics of sodium and potassium channels.

Difficulty level: Beginner
Duration: 19:20
Speaker: : Carl Petersen

In this lesson, you will learn about the ionic basis of the action potential, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

This lesson delves into the specifics of how action potentials propagate through individual neurons.

Difficulty level: Beginner
Duration: 23:16
Speaker: : Carl Petersen

This lesson discusses long-range inhibitory connections in the brain, with examples from three different systems.

Difficulty level: Beginner
Duration: 19:05
Speaker: : Carl Petersen
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

This lecture gives an introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32

This lecture covers the history of behaviorism and the ultimate challenge to behaviorism. 

Difficulty level: Beginner
Duration: 1:19:08

This lecture covers various learning theories.

Difficulty level: Beginner
Duration: 1:00:42

This lesson characterizes different types of learning in a neuroscientific and cellular context, and various models employed by researchers to investigate the mechanisms involved. 

Difficulty level: Intermediate
Duration: 3:54
Speaker: : Dan Goodman

In this lesson, you will learn about different approaches to modeling learning in neural networks, particularly focusing on system parameters such as firing rates and synaptic weights impact a network. 

Difficulty level: Intermediate
Duration: 9:40
Speaker: : Dan Goodman

How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.

Difficulty level: Beginner
Duration: 1:08:45
Speaker: : Clay Reid

This lesson provides an overview of how to construct computational pipelines for neurophysiological data using DataJoint.

Difficulty level: Beginner
Duration: 17:37
Speaker: : Dimitri Yatsenko

This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models. 

Difficulty level: Intermediate
Duration: 6:33
Speaker: : Marcus Ghosh

Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation. 

Difficulty level: Intermediate
Duration: 6:58
Speaker: : Marcus Ghosh

This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted. 

Difficulty level: Intermediate
Duration: 7:03
Speaker: : Marcus Ghosh

While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time. 

Difficulty level: Intermediate
Duration: 4:48
Speaker: : Marcus Ghosh

Whereas the previous two lessons described the biophysical and signalling properties of individual neurons, this lesson describes properties of those units when part of larger networks. 

Difficulty level: Intermediate
Duration: 6:00
Speaker: : Marcus Ghosh