Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level

INCF Assembly 2022 - Day 2 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 2. 

VIEW THE PROGRAM

 

INCF Assembly 2022 - Day 1 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 1. 

VIEW THE PROGRAM

 
INCF TrainingSpace

2021 Virtual Miniscope Workshop

MetaCell

A virtual workshop with lectures and hands-on tutorials that will teach participants how to use open-source Miniscopes for in vivo calcium imaging. This workshop is designed to introduce all aspects of using Miniscopes, including basic principles of Miniscope design and imaging, how to build and attach a Miniscope, how to implant a GRIN lens for imaging deep structures, and how to analyze imaging data.

 

Machine Learning (CONP)

This course begins with the conceptual basics of machine learning and then moves on to some Python-based applications of popular supervised learning algorithms to neuroscience data. This is followed by a series of lectures that explore the history and applications of deep learning, ending with a presentation on the potential of deep learning for neuroscience applications/mis-applications.

 
INCF TrainingSpace

Deep Learning: Optimization

NYU Center for Data Science

This module covers the concepts of gradient descent, stochastic gradient descent, and momentum. It is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for

 
INCF TrainingSpace

Deep Learning: Control

NYU Center for Data Science

This module covers the concepts of model predictive control, emulation of the kinematics from observations, training a policy, and predictive policy learning under uncertainty. It is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer

 
INCF TrainingSpace

Deep Learning: Graphs

NYU Center for Data Science

This module provides an introduction to the problem of speech recognition using neural models, emphasizing the CTC loss for training and inference when input and output sequences are of different lengths. It also covers beam search for use during inference, and how that procedure may be modeled at training time using a Graph Transformer Network.

 
INCF TrainingSpace

Deep Learning: Associative Memories

NYU Center for Data Science

This module covers the concept of associative memories in deep learning. It is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Introduction to Deep Learning (module 1 of the course), Parameter Sharing (module 2 of the course), 

 
INCF TrainingSpace

Deep Learning: Advanced Energy-Based Models

NYU Center for Data Science

This module is intended to provide a foundation in energy-based models. It is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Introduction to Deep Learning (module 1 of the course), Parameter Sharing (module 2 of the course),

 
INCF TrainingSpace

Deep Learning: Foundations of Energy-Based Models

NYU Center for Data Science

This module is intended to provide a foundation in energy-based models, and is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: <

 
INCF TrainingSpace

Deep Learning: Parameters Sharing

NYU Center for Data Science

This course covers the concepts of recurrent and convolutional nets (theory and practice), natural signals properties and the convolution, and recurrent neural networks (vanilla and gated, LSTM).

 
INCF TrainingSpace

Introduction to Deep Learning

NYU Center for Data Science

This module provides an introduction to the motivation of deep learning and its history and inspiration.

 

Open Data in Neuroscience: Data Sharing in EBRAINS

Maaike van Swieten, Ida Aasebø, the EBRAINS curation services and HBP-EBRAINS

There is a broad consensus among researchers, publishers, and funding bodies that open sharing of data is needed to address major reproducibility and transparency challenges that currently exist in all scientific disciplines. In addition to potentially increasing the utilization of shared data through re-analysis and integration with other data, data sharing is beneficial for individual researchers through data citation and increased exposure of research.

 
INCF TrainingSpace

Foundations of Neurotechnology

The BCI Guys

This course provides a broad, non-technical overview of the field of neurotechnology. It is intended to provide users with a fundamental understanding of how neurotechnology works.

 

International Neuroethics Society Webinar Series

International Neuroethics Society

This course consists of a series of webinars organized by the International Neuroethics Society on various neuroethics topics. 

 

Neuro Ethics Day at the NeuroSchool of Aix Marseille University

NeuroSchool of Aix Marseille University

This introductory-level course provide learners with an introduction to the field of neuroethics and spans the ethics of neuroscience to the neuroscience of ethics. The ethics of neuroscience lectures cover the ethical issues that arise in device/drug enhancement, imaging/monitoring, and social uses of neuroscience in the legal/justice system. The neuroscience of ethics lectures cover the origin of ethics (neural mechanisms and evolutionary origin).

 

INCF/OCNS Working Group on Computational Neuroscience Software

INCF

This working group is a collaboration between OCNS and INCF. The group focuses on evaluating and testing computational neuroscience tools; finding them, testing them, learning how they work, and informing developers of issues to ensure that these tools remain in good shape by having communities looking after them. Since many members of the WG are themselves tool developers, we will also learn from each other and will work towards improving interoperability between related tools.

 

Data Science and Neuroinformatics

INCF

Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools.

 

The International Brain Initiative (IBI)

INCF

The International Brain Initiative (IBI) is a consortium of the world’s major large-scale brain initiatives and other organizations with a vested interest in catalyzing and advancing neuroscience research through international collaboration and knowledge sharing. This session will introduce the IBI and the current efforts of the Data Standards and Sharing Working Group with a view to gain input from a wider neuroscience and neuroinformatics community. 

 

FAIR Approaches for Electrophysiology

INCF

The course provides an introduction to the growing field of electrophysiology standards, infrastructure, and initiatives. From data curation on open research infrastructures like EBRAINS, to overviews of national data analytics platforms like Australia's AEDAPT, the lessons in this course highlight already available resources for the global neuroinformatics commuity while also reinforcing the need for and importance of FAIR science principles in future research projects.