This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.
The workshop will include interactive seminars given by selected experts in the field covering all aspects of (FAIR) small animal MRI data acquisition, analysis, and sharing. The seminars will be followed by hands-on training where participants will perform use case scenarios using software established by the organizers. This will include an introduction to the basics of using command line interfaces, Python installation, working with Docker/Singularity containers, Datalad/Git, and BIDS.
Data science relies on several important aspects of mathematics. In this course, you'll learn what forms of mathematics are most useful for data science, and see some worked examples of how math can solve important data science problems.
Given the extreme interconnectedness of the human brain, studying any one cerebral area in isolation may lead to spurious results or incomplete, if not problematic, interpretations. This course introduces participants to the various spatial scales of neuroscience and the fundamentals of whole-brain modelling, used to generate a more thorough picture of brain activity.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
As technological improvements continue to facilitate innovations in the mental health space, researchers and clinicians are faced with novel opportunities and challenges regarding study design, diagnoses, treatments, and follow-up care. This course includes a lecture outlining these new developments, as well as a workshop which introduces users to Synapse, an open-source platform for collaborative data analysis.
This course includes two tutorials on R, a programming language and environment for statistical computing and graphics. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc.) and graphical techniques, and is highly extensible.
This workshop delves into the need for, structure of, tools for, and use of hierarchical event descriptor (HED) annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. HED are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding.
The emergence of data-intensive science creates a demand for neuroscience educators worldwide to deliver better neuroinformatics education and training in order to raise a generation of modern neuroscientists with FAIR capabilities, awareness of the value of standards and best practices, knowledge in dealing with big datasets, and the ability to integrate knowledge over multiple scales and methods.
This couse is the opening module for the University of Toronto's Krembil Centre for Neuroinformatics' virtual learning series Solving Problems in Mental Health Using Multi-Scale Computational Neuroscience. Lessons in this course introduce participants to the study of brain disorders, starting from elemental units like genes and neurons, eventually building up to whole-brain modelling and global activity patterns.
The Neurodata Without Borders: Neurophysiology project (NWB, https://www.nwb.org/) is an effort to standardize the description and storage of neurophysiology data and metadata. NWB enables data sharing and reuse and reduces the energy-barrier to applying data analytics both within and across labs. Several laboratories, including the Allen Institute for Brain Science, have wholeheartedly adopted NWB.
This workshop provides basic knowledge on personalized brain network modeling using the open-source simulation platform The Virtual Brain (TVB). Participants will gain theoretical knowledge and apply this knowledge to construct brain models, process multimodal neuroimaging data for reconstructing individual brains, run simulations, and use supporting neuroinformatics tools such as collaboratories, pipelines, workflows, and data repositories.
This workshop hosted by HBP, EBRAINS, and the European Academy of Neurology (EAN) aimed to identify and openly discuss all issues and challenges associated with data sharing in Europe: from ethics to data safety and privacy including those specific to data federation such as the development and validation of federated algorithms.
This course corresponds to the first session of talks given at INCF's Neuroinformatics Assembly 2023. The sessions consists of several lectures, focusing on using the principles of FAIR (findability, accessibility, interoperability, and reusability) to inform future directions in neuroscience and neuroinformatics. In particular, these talks deal with the development of knowledge graphs and ontologies.
Notebook systems are proving invaluable to skill acquisition, research documentation, publication, and reproducibility. This series of presentations introduces the most popular platform for computational notebooks, Project Jupyter, as well as other resources like Binder and NeuroLibre.
This course consists of several introductory lectures on different aspects of biochemical models. The lectures cover topics such as stability analysis of neural models, oscillations and bursting, and weakly coupled oscillators. You will learn about modeling various scales and properties of neural mechanisms, from firing-rate models of single neurons to pattern generation in visual system hallucinations.
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.
In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.
This course contains videos, lectures, and hands-on tutorials as part of INCF's Neuroinformatics Assembly 2023 workshop on developing robust and reproducible research workflows to foster greater collaborative efforts in neuroscience.
Most approaches within computational neuroscience simulate systems, brain networks, local circuits, as they are now. In recent years, homeostatic regulation has been characterized and modeled; however, for understanding diseases that have their origin in genetic defects that emerge at later age, it is important to understand how these defects interact with developmental processes that occur earlier and last longer that the typical period considered for homeostatic studies.