This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.
Standards and best practices make neuroscience a data-centric discipline and are key for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. This study track provides an introduction to standards and best practices that support the FAIR Principles.
This course contains videos, lectures, and hands-on tutorials as part of INCF's Neuroinformatics Assembly 2023 workshop on developing robust and reproducible research workflows to foster greater collaborative efforts in neuroscience.
Ethical conduct of science, good governance of data, and accelerated translation to the clinic are key to high-calibre open neuroscience. Everyday practitioners of science must be sensitized to a range of ethical considerations in their research, some having especially to do with open data-sharing. The lessons included in this course introduce a number of these topics and end with concrete guidance for participant consent and de-identification of data.
Most neuroscience journals request authors to make their data publicly available in appropriate repositories. The requirements and policies put forward by journals vary, and the services provided for different types of data also differ considerably across repositories.
Most who enter the field of computational neuroscience have a prior background in either mathematics, physics, computer science, or (neuro)biology. Since computational neuroscience requires a bit of knowledge from all these fields, with some basic knowledge of neurons and a familiarity with certain types of equations and mathematical concepts, we recommend two different "starting tracks" depending on the student's background before you begin the lectures listed below:
This course tackles the issue of maintaining ethical research and healthcare practices in the age of increasingly powerful technological tools like machine learning and artificial intelligence. While there is great potential for innovation and improvement in the clinical space thanks to AI development, lecturers in this course advocate for a greater emphasis on human-centric care, calling for algorithm design which takes the full intersectionality of individuals into account.
This couse is the opening module for the University of Toronto's Krembil Centre for Neuroinformatics' virtual learning series Solving Problems in Mental Health Using Multi-Scale Computational Neuroscience. Lessons in this course introduce participants to the study of brain disorders, starting from elemental units like genes and neurons, eventually building up to whole-brain modelling and global activity patterns.
This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R.
Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools.
Notebook systems are proving invaluable to skill acquisition, research documentation, publication, and reproducibility. This series of presentations introduces the most popular platform for computational notebooks, Project Jupyter, as well as other resources like Binder and NeuroLibre.
The emergence of data-intensive science creates a demand for neuroscience educators worldwide to deliver better neuroinformatics education and training in order to raise a generation of modern neuroscientists with FAIR capabilities, awareness of the value of standards and best practices, knowledge in dealing with big datasets, and the ability to integrate knowledge over multiple scales and methods.
Neurohackademy is a two-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute. Participants learn about technologies used to analyze human neuroscience data, and to make analyses and results shareable and reproducible.
This workshop delves into the need for, structure of, tools for, and use of hierarchical event descriptor (HED) annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. HED are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding.
This course tackles the issue of maintaining ethical research and healthcare practices in the age of increasingly powerful technological tools like machine learning and artificial intelligence. While there is great potential for innovation and improvement in the clinical space thanks to AI development, lecturers in this course advocate for a greater emphasis on human-centric care, calling for algorithm design which takes the full intersectionality of individuals into account.
This module covers the concept of associative memories in deep learning. It is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Introduction to Deep Learning (module 1 of the course), Parameter Sharing (module 2 of the course),
As research methods and experimental technologies become ever more sophisticated, the amount of health-related data per individual which has become accessible is vast, giving rise to a corresponding need for cross-domain data integration, whole-person modelling, and improved precision medicine. This course provides lessons describing state of the art methods and repositories, as well as a tutorial on computational methods for data integration.
This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.