Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level
INCF TrainingSpace

Open Collaboration in Computational Neuroscience

INCF

Neuroscience has traditionally been a discipline where isolated labs have produced their own experimental data and created their own models to interpret their findings. However, it is becoming clear that no one lab can create cell and network models rich enough to address all the relevant biological questions, or to generate and analyse all the data required to inform, constrain, and test these models.

 

Module 3: Computational Models

Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.

 

Foundations of Machine Learning in Python

NeurotechEU

Course designed for advanced learners interested in understanding the foundations of Machine Learning in Python.

General: The course consists of 15 lectures (ca. 1-2 hours each) and 15 exercise sheets (for ca. 6 hours of programming each).

Institution: High-Performance Computing and Analytics Lab, University of Bonn

 
INCF TrainingSpace

INCF Assembly 2023 - Lightning Talks (Day 1)

INCF

This course consists of three lessons, each corresponding to a lightning talk given at the first day of INCF's Neuroinformatics Assembly 2023. By following along these brief talks, you will hear about topics such as open source tools for computer vision, tools for the integration of various MRI dataset formats, as well as international data governance. 

 

Reproducible Science (Including Git, Docker, and Binder)

Krembil Centre for Neuroinformatics

This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R. 

 

Reinforcement Learning

Neuromatch Academy

Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.

 

Fundamental Methods for Genomic Analysis

Krembil Centre for Neuroinformatics

This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.

 

Dynamical Neural Systems

ICTS

This course consists of several introductory lectures on different aspects of biochemical models. The lectures cover topics such as stability analysis of neural models, oscillations and bursting, and weakly coupled oscillators. You will learn about modeling various scales and properties of neural mechanisms, from firing-rate models of single neurons to pattern generation in visual system hallucinations. 

 

INCF Assembly 2022 - Day 1 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 1. 

VIEW THE PROGRAM

 

High-Performance Computing (HPC)

The dimensionality and size of datasets in many fields of neuroscience research require massively parallel computing power.  Fortunately, the maturity and accessibility of virtualization technologies has made it feasible to run the same analysis environments on platforms ranging from single laptop computers up to high-performance computing networks.

 
INCF TrainingSpace

Deep Learning: Foundations of Energy-Based Models

NYU Center for Data Science

This module is intended to provide a foundation in energy-based models, and is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: <

 

Module 5: Calcium Imaging

Mike X. Cohen

In this course, you will learn about working with calcium-imaging data, including image processing to remove background "blur", identifying cells based on threshold spatial contiguity, time-series filtering, and principal component analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

 

Using brainlife.io

brainlife.io

This course provides several visual walkthroughs documenting how to execute various processes in brainlife.io, an open-source, free and secure reproducible neuroscience analysis platform. The platform allows to analyze Magnetic Resonance Imaging (MRI), electroencephalography (EEG) and magnetoencephalography (MEG) data. Data can either be uploaded from local computers or imported from public archives such as OpenNeuro.org.

 

Fundamental Methods for Single-Cell Transcriptome Analysis

Krembil Centre for Neuroinformatics

This course, consisting of one lecture and two workshops, is presented by the Computational Genomics Lab at the Centre for Addiction and Mental Health and University of Toronto. The lecture deals with single-cell and bulk level transciptomics, while the two hands-on workshops introduce users to transcriptomic data types (e.g., RNAseq) and how to perform analyses in specific use cases (e.g., cellular changes in major depression). 

 

How to Use Allen Institute for Brain Science Resources

Allen Institute for Brain Science

This course features tutorials on how to use Allen atlases and digital brain atlasing tools, including operational and user features of the Allen Mouse Brain Atlas, as well as the Allen Institute's 3D viewing tool, Brain Explorer®.

 

Open Science: Practices and Policies

These lessons give an overview of the principles underpinning the objectives, policies, and practice of Open Science, including several representative policy documents that will be increasingly relevant to neuroscience research.

 

Reproducible Science (Including Git, Docker, and Binder)

Krembil Centre for Neuroinformatics

This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R.