Neuroscience has traditionally been a discipline where isolated labs have produced their own experimental data and created their own models to interpret their findings. However, it is becoming clear that no one lab can create cell and network models rich enough to address all the relevant biological questions, or to generate and analyse all the data required to inform, constrain, and test these models.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.
Course designed for advanced learners interested in understanding the foundations of Machine Learning in Python.
General: The course consists of 15 lectures (ca. 1-2 hours each) and 15 exercise sheets (for ca. 6 hours of programming each).
Institution: High-Performance Computing and Analytics Lab, University of Bonn
This course consists of three lessons, each corresponding to a lightning talk given at the first day of INCF's Neuroinformatics Assembly 2023. By following along these brief talks, you will hear about topics such as open source tools for computer vision, tools for the integration of various MRI dataset formats, as well as international data governance.
This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.
This course consists of several introductory lectures on different aspects of biochemical models. The lectures cover topics such as stability analysis of neural models, oscillations and bursting, and weakly coupled oscillators. You will learn about modeling various scales and properties of neural mechanisms, from firing-rate models of single neurons to pattern generation in visual system hallucinations.
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.
The dimensionality and size of datasets in many fields of neuroscience research require massively parallel computing power. Fortunately, the maturity and accessibility of virtualization technologies has made it feasible to run the same analysis environments on platforms ranging from single laptop computers up to high-performance computing networks.
This module is intended to provide a foundation in energy-based models, and is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: <
In this course, you will learn about working with calcium-imaging data, including image processing to remove background "blur", identifying cells based on threshold spatial contiguity, time-series filtering, and principal component analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
This course provides several visual walkthroughs documenting how to execute various processes in brainlife.io, an open-source, free and secure reproducible neuroscience analysis platform. The platform allows to analyze Magnetic Resonance Imaging (MRI), electroencephalography (EEG) and magnetoencephalography (MEG) data. Data can either be uploaded from local computers or imported from public archives such as OpenNeuro.org.
This course, consisting of one lecture and two workshops, is presented by the Computational Genomics Lab at the Centre for Addiction and Mental Health and University of Toronto. The lecture deals with single-cell and bulk level transciptomics, while the two hands-on workshops introduce users to transcriptomic data types (e.g., RNAseq) and how to perform analyses in specific use cases (e.g., cellular changes in major depression).
This course features tutorials on how to use Allen atlases and digital brain atlasing tools, including operational and user features of the Allen Mouse Brain Atlas, as well as the Allen Institute's 3D viewing tool, Brain Explorer®.
These lessons give an overview of the principles underpinning the objectives, policies, and practice of Open Science, including several representative policy documents that will be increasingly relevant to neuroscience research.
This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R.