Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level
INCF TrainingSpace

INCF Assembly 2023 - Lightning Talks (Day 1)

INCF

This course consists of three lessons, each corresponding to a lightning talk given at the first day of INCF's Neuroinformatics Assembly 2023. By following along these brief talks, you will hear about topics such as open source tools for computer vision, tools for the integration of various MRI dataset formats, as well as international data governance. 

 

Data Management, Repositories, & Search Engines

The importance of Research Data Management in the conduct of open and reproducible science is better understood and technically supported than ever, and many of the underlying principles apply as much to everyday activities of a single researcher as to large-scale, multi-center open data sharing.

 
INCF TrainingSpace

Introduction to Computational Neuroscience

INCF

Most who enter the field of computational neuroscience have a prior background in either mathematics, physics, computer science, or (neuro)biology. Since computational neuroscience requires a bit of knowledge from all these fields, with some basic knowledge of neurons and a familiarity with certain types of equations and mathematical concepts, we recommend two different "starting tracks" depending on the student's background before you begin the lectures listed below:

 

Using brainlife.io

brainlife.io

This course provides several visual walkthroughs documenting how to execute various processes in brainlife.io, an open-source, free and secure reproducible neuroscience analysis platform. The platform allows to analyze Magnetic Resonance Imaging (MRI), electroencephalography (EEG) and magnetoencephalography (MEG) data. Data can either be uploaded from local computers or imported from public archives such as OpenNeuro.org.

 

Reinforcement Learning

Neuromatch Academy

Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.

 
INCF TrainingSpace

Deep Learning: Associative Memories

NYU Center for Data Science

This module covers the concept of associative memories in deep learning. It is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Introduction to Deep Learning (module 1 of the course), Parameter Sharing (module 2 of the course), 

 

INCF Assembly 2022 - Day 2 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 2. 

VIEW THE PROGRAM

 

The Virtual Brain Education Pack (TVB EduPack)

The Virtual Brain

The Virtual Brain EduPack provides didactic use cases for The Virtual Brain (TVB). Typically a use case consists of a jupyter notebook and a didactic video. EduPack use cases help the user to reproduce TVB-based publications or to get started quickly with TVB.

 
INCF TrainingSpace

Data Science in MATLAB®

The MathWorks, Inc

This course consists of a series of lessons and tutorials aimed at providing an introductory overview of data science implementation in MATLAB®, a widely used, numeric and computing platform which works with many types of data and file formats. In this course, you will learn the basic concepts behind data science in general, as well as how to apply those concepts within the MATLAB framework in particular.

 

Module 1: Spikes

Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

 

The Virtual Brain Node #6 Workshop

The Virtual Brain

Get up to speed about the fundamental principles of full brain network modeling using the open-source neuroinformatics platform The Virtual Brain (TVB). This simulation environment enables the biologically realistic modeling of whole-brain network dynamics across different brain scales, using personalized structural connectome-based approach.

 
INCF TrainingSpace

Neurohackademy

University of Washington eScience Institute

Neurohackademy is a two-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute. Participants learn about technologies used to analyze human neuroscience data, and to make analyses and results shareable and reproducible.

 
INCF TrainingSpace

Introduction to EEGLAB

Swartz Center for Computational Neuroscience

EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data. In this course, you will learn about features incorporated into EEGLAB, including independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. EEGLAB runs under Linux, Unix, Windows, and Mac OS X.

 

Neuroimaging Connectomics

Krembil Centre for Neuroinformatics

This course consists of one lesson and one tutorial, focusing on the neural connectivity measures derived from neuroimaging, specifically from methods like functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI). Additional tools such as tractography and parcellation are discussed in the context of brain connectivity and mental health. The tutorial leads participants through the computation of brain connectomes from fMRI data. 

 

INCF Assembly 2022 - Day 2 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 2. 

VIEW THE PROGRAM

 

Module 3: Computational Models

Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.

 
INCF TrainingSpace

Session 6: Research Workflows for Collaborative Neuroscience

INCF

This course contains videos, lectures, and hands-on tutorials as part of INCF's Neuroinformatics Assembly 2023 workshop on developing robust and reproducible research workflows to foster greater collaborative efforts in neuroscience.

 
INCF TrainingSpace

Session 2: FAIR Sharing, Integration, & Analysis of Neuroscience Data

INCF

This course corresponds to the second session of INCF's Neuroinformatics Assembly 2023. This series of talks continues a discussion of FAIR principles from the first session, with a greater emphasis on brain data (humans and animals) atlases for data analysis and integation. 

 

Fundamental Methods for Genomic Analysis

Krembil Centre for Neuroinformatics

This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.

 
INCF TrainingSpace

Session 3: Streamlining Cross-Platform Data Integration

INCF

This course corresponds to the third session of talks given at INCF's Neuroinformatics Assembly 2023. In this session, the talks revolve around the idea of cross-platform data integration, discussing processes and solutions for rapidly developing an integrated workflow across independent systems for the US BRAIN Initiative Cell Census.