Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level

Dynamical Neural Systems

ICTS

This course consists of several introductory lectures on different aspects of biochemical models. The lectures cover topics such as stability analysis of neural models, oscillations and bursting, and weakly coupled oscillators. You will learn about modeling various scales and properties of neural mechanisms, from firing-rate models of single neurons to pattern generation in visual system hallucinations. 

 
INCF TrainingSpace

Deep Learning: Associative Memories

NYU Center for Data Science

This module covers the concept of associative memories in deep learning. It is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Introduction to Deep Learning (module 1 of the course), Parameter Sharing (module 2 of the course), 

 

Bayesian Models of Learning and Integration of Neuroimaging Data

Krembil Centre for Neuroinformatics

Bayesian inference (using prior knowledge to generate more accurate predictions about future events or outcomes) has become increasingly applied to the fields of neuroscience and neuroinformatics. In this course, participants are taught how Bayesian statistics may be used to build cognitive models of processes like learning or perception. This course also offers theoretical and practical instruction on dynamic causal modeling as applied to fMRI and EEG data.

 

Data Management, Repositories, & Search Engines

The importance of Research Data Management in the conduct of open and reproducible science is better understood and technically supported than ever, and many of the underlying principles apply as much to everyday activities of a single researcher as to large-scale, multi-center open data sharing.

 
INCF TrainingSpace

Preprocessing Data in EEGLAB

Swartz Center for Computational Neuroscience

EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.

 

Neuroscience for Machine Learners (Neuro4ML)

Neural Reckoning Group

This is a freely available online course on neuroscience for people with a machine learning background. The aim is to bring together these two fields that have a shared goal in understanding intelligent processes. Rather than pushing for “neuroscience-inspired” ideas in machine learning, the idea is to broaden the conceptions of both fields to incorporate elements of the other in the hope that this will lead to new, creative thinking.

 
INCF TrainingSpace

Session 5: Infrastructure for Sensitive Data

INCF

This course consists of a three-part session from the second day of INCF's Neuroinformatics Assembly 2023. The lessons describe various on-going efforts within the fields of neuroinformatics and clinical neuroscience to adjust to the increasingly vast volumes of brain data being collected and stored.

 

R Programming Language

Edureka

This course includes two tutorials on R, a programming language and environment for statistical computing and graphics. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc.) and graphical techniques, and is highly extensible.

 
INCF TrainingSpace

INCF Assembly 2023 - Lightning Talks (Day 1)

INCF

This course consists of three lessons, each corresponding to a lightning talk given at the first day of INCF's Neuroinformatics Assembly 2023. By following along these brief talks, you will hear about topics such as open source tools for computer vision, tools for the integration of various MRI dataset formats, as well as international data governance. 

 
INCF TrainingSpace

Session 9: Event Annotation in Neuroimaging Using HED: From Experiment to Analysis

INCF

This workshop delves into the need for, structure of, tools for, and use of hierarchical event descriptor (HED) annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. HED are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding.

 

INCF Assembly 2022 - Day 1 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 1. 

VIEW THE PROGRAM

 
INCF TrainingSpace

Introduction to Computational Neuroscience

INCF

Most who enter the field of computational neuroscience have a prior background in either mathematics, physics, computer science, or (neuro)biology. Since computational neuroscience requires a bit of knowledge from all these fields, with some basic knowledge of neurons and a familiarity with certain types of equations and mathematical concepts, we recommend two different "starting tracks" depending on the student's background before you begin the lectures listed below:

 
INCF TrainingSpace

Session 1: A FAIR Roadmap for Knowledge Graphs and Ontologies

INCF

This course corresponds to the first session of talks given at INCF's Neuroinformatics Assembly 2023. The sessions consists of several lectures, focusing on using the principles of FAIR (findability, accessibility, interoperability, and reusability) to inform future directions in neuroscience and neuroinformatics. In particular, these talks deal with the development of knowledge graphs and ontologies. 

 

Foundations of Machine Learning in Python

NeurotechEU

Course designed for advanced learners interested in understanding the foundations of Machine Learning in Python.

General: The course consists of 15 lectures (ca. 1-2 hours each) and 15 exercise sheets (for ca. 6 hours of programming each).

Institution: High-Performance Computing and Analytics Lab, University of Bonn

 

INCF Assembly 2022 - Day 2 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 2. 

VIEW THE PROGRAM

 

Fundamental Methods for Genomic Analysis

Krembil Centre for Neuroinformatics

This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.

 

Module 5: Calcium Imaging

Mike X. Cohen

In this course, you will learn about working with calcium-imaging data, including image processing to remove background "blur", identifying cells based on threshold spatial contiguity, time-series filtering, and principal component analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.