Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level

Programming

A number of programming languages are ubiquitous in modern neuroscience and are key to the competence, freedom, and creativity necessary in neuroscience research. This course offers lectures on the fundamentals of data science and specific neuroinformatic tools used in the investigation of brain data. Attendees of this course will be learn about the programming languages Python, R, and MATLAB, as well as their associated packages and software environments. 

 
INCF TrainingSpace

Deep Learning: Optimization

NYU Center for Data Science

This module covers the concepts of gradient descent, stochastic gradient descent, and momentum. It is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for

 

INCF Assembly 2022 - Training Day 2

INCF

This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.

 
INCF TrainingSpace

Session 1: A FAIR Roadmap for Knowledge Graphs and Ontologies

INCF

This course corresponds to the first session of talks given at INCF's Neuroinformatics Assembly 2023. The sessions consists of several lectures, focusing on using the principles of FAIR (findability, accessibility, interoperability, and reusability) to inform future directions in neuroscience and neuroinformatics. In particular, these talks deal with the development of knowledge graphs and ontologies. 

 

Module 3: Computational Models

Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.

 

Module 5: Calcium Imaging

Mike X. Cohen

In this course, you will learn about working with calcium-imaging data, including image processing to remove background "blur", identifying cells based on threshold spatial contiguity, time-series filtering, and principal component analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

 

Reproducible Science (Including Git, Docker, and Binder)

Krembil Centre for Neuroinformatics

This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R. 

 
INCF TrainingSpace

Session 9: Event Annotation in Neuroimaging Using HED: From Experiment to Analysis

INCF

This workshop delves into the need for, structure of, tools for, and use of hierarchical event descriptor (HED) annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. HED are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding.

 

Publishing

This course is currently under construction but will coming soon.  It will give an overview of the world of scientific publishing, spanning from traditional formats, to open to access, to open, interactive, reproducible, and 'living' publications with modifiable and executable code.

 

Hypothes.is: A Web-Based Annotation Tool

Hypothes.is

This short course covers Hypothes.is, an annotation tool that enables users to collaboratively annotate course readings and other internet resources.

Features of Hypothes.is:

 

The Virtual Brain: Bernstein Center Lectures 2019

The Virtual Brain

This course provides a general overview about brain simulation, including its fundamentals as well as clinical applications in populations with stroke, neurodegeneration, epilepsy, and brain tumors. This course also introduces the mathematical framework of multi-scale brain modeling and its analysis.

 

INCF Assembly 2022 - Day 1 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 1. 

VIEW THE PROGRAM

 

Whole-Brain Modelling

Krembil Centre for Neuroinformatics

Given the extreme interconnectedness of the human brain, studying any one cerebral area in isolation may lead to spurious results or incomplete, if not problematic, interpretations. This course introduces participants to the various spatial scales of neuroscience and the fundamentals of whole-brain modelling, used to generate a more thorough picture of brain activity.

 
INCF TrainingSpace

Session 7: Practical Guide to Overcome the Reproducibility Crisis in Small Animal Neuroimaging: Workflows, Tools, and Repositories

INCF

The workshop will include interactive seminars given by selected experts in the field covering all aspects of (FAIR) small animal MRI data acquisition, analysis, and sharing. The seminars will be followed by hands-on training where participants will perform use case scenarios using software established by the organizers. This will include an introduction to the basics of using command line interfaces, Python installation, working with Docker/Singularity containers, Datalad/Git, and BIDS.

 
INCF TrainingSpace

Session 5: Infrastructure for Sensitive Data

INCF

This course consists of a three-part session from the second day of INCF's Neuroinformatics Assembly 2023. The lessons describe various on-going efforts within the fields of neuroinformatics and clinical neuroscience to adjust to the increasingly vast volumes of brain data being collected and stored.

 
INCF TrainingSpace

Lifecycle of Human Electroencephalography/Event-Related Potential Data

Czech National Node for Neuroinformatics

This course is intended for those interested in electroencephalography (EEG) and event-related potentials (ERPs) techniques, and those interested in collecting, annotating, standardizing, storing, processing, sharing, and publishing data from electrical activity of the human brain.

 

GLM, Regression Models, and Latent Variables

Difficulties experienced in understanding machine learning techniques often stem from lack of clarity concerning more basic statistical models and fundamental considerations, including the various regression models that can all be subsumed under the General Linear Model.

 

INCF Assembly 2022 - Day 2 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 2. 

VIEW THE PROGRAM

 

Introduction to Neurodata Without Borders (NWB) for Python Users II

NWB Core Development Team

The Neurodata Without Borders: Neurophysiology project (NWB:N, https://www.nwb.org/) is an effort to standardize the description and storage of neurophysiology data and metadata. NWB enables data sharing and reuse and reduces the energy barrier to applying data analytics both within and across labs. Several laboratories, including the Allen Institute for Brain Science, have wholeheartedly adopted NWB.

 
INCF TrainingSpace

Session 7: Practical Guide to Overcome the Reproducibility Crisis in Small Animal Neuroimaging: Workflows, Tools, and Repositories

INCF

The workshop will include interactive seminars given by selected experts in the field covering all aspects of (FAIR) small animal MRI data acquisition, analysis, and sharing. The seminars will be followed by hands-on training where participants will perform use case scenarios using software established by the organizers. This will include an introduction to the basics of using command line interfaces, Python installation, working with Docker/Singularity containers, Datalad/Git, and BIDS.