This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.
The number of patients with dementia is estimated to increase given the aging population. This will lead to a number of challenges in the future in terms of diagnosis and care for patients with dementia. To meet these needs such as early diagnsosis and development of prognostic biomarkers, large datasets, such as the federated datasets on dementia. The EAN Dementia and cognitive disorders scientific panel can play an important role as coordinator and connecting panel members who wish to participate in e.g. consortia.
This lesson provides an overview of how to construct computational pipelines for neurophysiological data using DataJoint.
This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models.
Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation.
This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted.
While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.
Whereas the previous two lessons described the biophysical and signalling properties of individual neurons, this lesson describes properties of those units when part of larger networks.
This lesson covers the ionic basis of the action potential, including the Hodgkin-Huxley model.
This lesson provides an introduction to the myriad forms of cellular mechanisms whicn underpin healthy brain function and communication.
In this lesson you will learn about the ionic basis of the action potential, including the Hodgkin-Huxley model.
This lesson provides an introduction to the course Cellular Mechanisms of Brain Function.
This lesson covers membrane potential of neurons, and how parameters around this potential have direct consequences on cellular communication at both the individual and population level.
This lesson covers the spatiotemporal dynamics of the membrane potential.
In this lesson you will learn about neurons' ability to generate signals called action potentials, and biophysics of voltage-gated ion channels.
This lesson discusses voltage-gating kinetics of sodium and potassium channels.
In this lesson, you will learn about the ionic basis of the action potential, including the Hodgkin-Huxley model.
This lesson delves into the specifics of how action potentials propagate through individual neurons.
In this lesson, you will learn about neurotransmitter release in the presynaptic specialization.
This lesson covers synaptic modulation through diffusing neurotransmitters.