Skip to main content

In this lesson you will learn about current efforts towards integrating multimodal human brain data using the open source SCORE HED library schema. 

Difficulty level: Beginner
Duration: 23:29
Speaker: : Dora Hermes

This talk covers the differences between applying HED annotation to fMRI datasets versus other neuroimaging practices, and also introduces an analysis pipeline using HED tags. 

Difficulty level: Beginner
Duration: 22:52
Speaker: : Monique Denissen

This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.

Difficulty level: Beginner
Duration: 8:11
Speaker: : Thomas Wachtler

This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.

Difficulty level: Beginner
Duration: 15:57
Speaker: : Andrew Davison

This video explains what metadata is, why it is important, and how you can organize your metadata to increase the FAIRness of your data on EBRAINS.

Difficulty level: Beginner
Duration: 17:23
Speaker: : Ulrike Schlegel

This is a tutorial on how to simulate neuronal spiking in brain microcircuit models, as well as how to analyze, plot, and visualize the corresponding data. 

Difficulty level: Intermediate
Duration: 1:39:50
Speaker: : Frank Mazza

This video will document the process of running an app on brainlife, from data staging to archiving of the final data outputs.

Difficulty level: Beginner
Duration: 3:43
Speaker: :

This quick video presents some of the various visualizers available on brainlife.io

Difficulty level: Beginner
Duration: 1:11
Speaker: :

This short video shows how a brainlife.io publication can be opened from the Data Deposition page of the journal Nature Scientific Data.

Difficulty level: Beginner
Duration: 2:25
Speaker: :
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman