Skip to main content

This lecture describes how to build research workflows, including a demonstrate using DataJoint Elements to build data pipelines.

Difficulty level: Intermediate
Duration: 47:00
Speaker: : Dimitri Yatsenko

This lesson provides an introduction to the Symposium on Science Management at the Canadian Association for Neuroscience 2019 Meeting.

Difficulty level: Beginner
Duration: 9:52
Speaker: : Randy McIntosh

This lesson gives a primer to project management in a scientific context, with a particular neuroinformatic case study. 

Difficulty level: Beginner
Duration: 19:06
Speaker: : Kelly Shen

In this lesson, you will hear about the current challenges regarding data management, as well as policies and resources aimed to address them. 

Difficulty level: Beginner
Duration: 18:13
Speaker: : Mojib Javadi

This lesson covers "Knowledge Translation", the activities involved in moving research from the laboratory, the research journal, and the academic conference into the hands of people and organizations who can put it to practical use.

Difficulty level: Beginner
Duration: 15:05
Speaker: : Jordan Antflick

In this lesson, you will hear about the various methods developed and employed in managing performance. 

Difficulty level: Beginner
Duration: 12:57

This lesson provides an overview of how to manage relationships in a research context, while highlighting the need for effective communication at various levels.

Difficulty level: Beginner
Duration:
Speaker: : Helena Ledmyr

In this lesson you will hear a panel discussion which hosts experts in the field whom have extensive experience with management in a science setting.

Difficulty level: Beginner
Duration: 54:38
Speaker: :

The state of the field regarding the diagnosis and treatment of major depressive disorder (MDD) is discussed. Current challenges and opportunities facing the research and clinical communities are outlined, including appropriate quantitative and qualitative analyses of the heterogeneity of biological, social, and psychiatric factors which may contribute to MDD.

Difficulty level: Beginner
Duration: 1:29:28

This lesson gives a description of the BrainHealth Databank, a repository of many types of health-related data, whose aim is to accelerate research, improve care, and to help better understand and diagnose mental illness, as well as develop new treatments and prevention strategies. 

 

This lesson corresponds to slides 46-78 of the PDF below. 

Difficulty level: Beginner
Duration: 1:12:25
Speaker: : Joanna Yu

This lesson describes not only the need for precision medicine, but also the current state of the methods, pharmacogenetic approaches, utility and implementation of such care today.

 

This lesson corresponds to slides 1-50 of the PowerPoint below. 

Difficulty level: Beginner
Duration: 1:24:30
Speaker: : Dan Felsky

This lecture discusses what defines an integrative approach regarding research and methods, including various study designs and models which are appropriate choices when attempting to bridge data domains; a necessity when whole-person modelling. 

Difficulty level: Beginner
Duration: 1:28:14
Speaker: : Dan Felsky

This brief talk goes into work being done at The Alan Turing Institute to solve real-world challenges and democratize computer vision methods to support interdisciplinary and international researchers. 

Difficulty level: Beginner
Duration: 7:10
Course:

This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.

 

Difficulty level: Intermediate
Duration:
Speaker: :