This lecture provides an introduction to the course "Cognitive Science & Psychology: Mind, Brain, and Behavior".
In this lesson, you will learn about different approaches to modeling learning in neural networks, particularly focusing on system parameters such as firing rates and synaptic weights impact a network.
In this lesson, you will learn about some of the many methods to train spiking neural networks (SNNs) with either no attempt to use gradients, or only use gradients in a limited or constrained way.
In this lesson, you will learn how to train spiking neural networks (SNNs) with a surrogate gradient method.
This lesson explores how researchers try to understand neural networks, particularly in the case of observing neural activity.
In this lesson you will learn about the motivation behind manipulating neural activity, and what forms that may take in various experimental designs.
This lecture focuses on the structured validation process within computational neuroscience, including the tools, services, and methods involved in simulation and analysis.
This module explains how neurons come together to create the networks that give rise to our thoughts. The totality of our neurons and their connection is called our connectome. Learn how this connectome changes as we learn, and computes information.
This lecture covers the emergence of cognitive science after the Second World War as an interdisciplinary field for studying the mind, with influences from anthropology, cybernetics, and artificial intelligence.
This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain.
This lecture outlines various approaches to studying Mind, Brain, and Behavior.
This lecture covers the history of behaviorism and the ultimate challenge to behaviorism.
This lecture covers various learning theories.
This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.