Skip to main content

In this lesson, you will learn how to understand data management plans and why data sharing is important. 

Difficulty level: Beginner
Duration: 44:24
Speaker: : Jenny Muilenburg

This lecture covers a wide range of aspects regarding neuroinformatics and data governance, describing both their historical developments and current trajectories. Particular tools, platforms, and standards to make your research more FAIR are also discussed.

Difficulty level: Beginner
Duration: 54:58
Speaker: : Franco Pestilli

This brief video provides an introduction to brainlife.io, a free cloud computing platform for neuroimaging data analysis. 

Difficulty level: Beginner
Duration: 2:41
Speaker: :

This video will document the process of uploading data into a brainlife project using ezBIDS.

Difficulty level: Beginner
Duration: 6:15
Speaker: :

This lesson provides a brief visual walkthrough on the necessary steps when copying data from one brainlife project to another. 

Difficulty level: Beginner
Duration: 1:07
Speaker: :

This brief video walks you through the steps necessary when creating a project on brainlife.io. 

Difficulty level: Beginner
Duration: 1:45
Speaker: :

This lesson describes and shows four different ways one may upload their data to brainlife.io.

Difficulty level: Beginner
Duration: 6:35
Speaker: :

This quick video presents some of the various visualizers available on brainlife.io

Difficulty level: Beginner
Duration: 1:11
Speaker: :

This brief video rus through how to make an accout on brainlife.io.

Difficulty level: Beginner
Duration: 0:30
Speaker: :

This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research. 

Difficulty level: Beginner
Duration: 57:52
Speaker: : Satrajit Ghosh

This talk covers the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC), a free one-stop-shop collaboratory for science researchers that need resources such as neuroimaging analysis software, publicly available data sets, or computing power.

Difficulty level: Beginner
Duration: 1:00:10
Speaker: : David Kennedy

This talk covers the Human Connectome Project, which aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data, and the opportunity to achieve never before realized conclusions about the living human brain.

Difficulty level: Advanced
Duration: 59:06
Speaker: : Jennifer Elam

This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

Difficulty level: Beginner
Duration: 15:14

This lecture focuses on the structured validation process within computational neuroscience, including the tools, services, and methods involved in simulation and analysis.

Difficulty level: Beginner
Duration: 14:19
Speaker: : Michael Denker

This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.

Difficulty level: Beginner
Duration: 8:11
Speaker: : Thomas Wachtler
Course:

This session provides users with an introduction to tools and resources that facilitate the implementation of FAIR in their research.

 

 

Difficulty level: Beginner
Duration: 38:36
Course:

This session will include presentations of infrastructure that embrace the FAIR principles developed by members of the INCF Community.

 

This lecture provides an overview of The Virtual Brain Simulation Platform.

 

Difficulty level: Beginner
Duration: 9:36
Speaker: : Petra Ritter

This lesson consists of a demonstration of the BRIAN Simulator. BRIAN is a free, open-source simulator for spiking neural networks. It is written in the Python programming language and is available on almost all platforms, and is designed to be easy to learn and use, highly flexible, and easily extensible.

Difficulty level: Beginner
Duration: 1:27:32
Speaker: : Marcel Stimberg

This lesson provides a demonstration of NeuroFedora, a volunteer-driven initiative to provide a ready-to-use Fedora-based free and open-source software platform for neuroscience. By making the tools used in the scientific process easier to use, NeuroFedora aims to aid reproducibility, data sharing, and collaboration in the research community.The CompNeuro Fedora Lab was specially to enable computational neuroscience.

Difficulty level: Beginner
Duration: 1:06:08
Speaker: : Ankur Sinha

This lesson provides an introduction and live demonstration of neurolib, a computational framework for simulating coupled neural mass models written in Python. Neurolib provides a simulation and optimization framework which allows you to easily implement your own neural mass model, simulate fMRI BOLD activity, analyse the results and fit your model to empirical data.

Difficulty level: Beginner
Duration: 1:06:53
Speaker: : Çağlar Çakan