The importance of Research Data Management in the conduct of open and reproducible science is better understood and technically supported than ever, and many of the underlying principles apply as much to everyday activities of a single researcher as to large-scale, multi-center open data sharing.
This course consists of several lightning talks from the second day of INCF's Neuroinformatics Assembly 2023. Covering a wide range of topics, these brief talks provide snapshots of various neuroinformatic efforts such as brain-computer interface standards, dealing with multimodal animal MRI datasets, distributed data management, and several more.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
In this course, you will learn how computational neuroscientists use mathematical models and computer simulations to study different plasticity phenomena in the brain. During the course, you will program your own neuron model, a so-called leaky-integrate-and-fire (LIF) neuron model, and simulate it with a computer. You will also learn how to add various neuronal properties and plasticity mechanisms to the model and study how they operate.
The importance of Research Data Management in the conduct of open and reproducible science is better understood and technically supported than ever, and many of the underlying principles apply as much to everyday activities of a single researcher as to large-scale, multi-center open data sharing.
The emergence of data-intensive science creates a demand for neuroscience educators worldwide to deliver better neuroinformatics education and training in order to raise a generation of modern neuroscientists with FAIR capabilities, awareness of the value of standards and best practices, knowledge in dealing with big datasets, and the ability to integrate knowledge over multiple scales and methods.
The UCSC Genome Browser is an online and downloadable genome browser hosted by the University of California, Santa Cruz (UCSC). It is an interactive website offering access to genome sequence data from a variety of vertebrate and invertebrate species and major model organisms, integrated with a large collection of aligned annotations.
This course contains videos, lectures, and hands-on tutorials as part of INCF's Neuroinformatics Assembly 2023 workshop on developing robust and reproducible research workflows to foster greater collaborative efforts in neuroscience.
This course consists of several lightning talks from the second day of INCF's Neuroinformatics Assembly 2023. Covering a wide range of topics, these brief talks provide snapshots of various neuroinformatic efforts such as brain-computer interface standards, dealing with multimodal animal MRI datasets, distributed data management, and several more.
The lecture series focuses on current trends in modern techniques in neuroscience. Inspiring scientists from the NeurotechEU Alliance will give an overview of the latest advances and developments.
Data science relies on several important aspects of mathematics. In this course, you'll learn what forms of mathematics are most useful for data science, and see some worked examples of how math can solve important data science problems.
Most neuroscience journals request authors to make their data publicly available in appropriate repositories. The requirements and policies put forward by journals vary, and the services provided for different types of data also differ considerably across repositories.
This course corresponds to the third session of talks given at INCF's Neuroinformatics Assembly 2023. In this session, the talks revolve around the idea of cross-platform data integration, discussing processes and solutions for rapidly developing an integrated workflow across independent systems for the US BRAIN Initiative Cell Census.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
A virtual workshop with lectures and hands-on tutorials that will teach participants how to use open-source Miniscopes for in vivo calcium imaging. This workshop is designed to introduce all aspects of using Miniscopes, including basic principles of Miniscope design and imaging, how to build and attach a Miniscope, how to implant a GRIN lens for imaging deep structures, and how to analyze imaging data.
This course contains sessions from the first day of INCF's Neuroinformatics Assembly 2022.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
This workshop provides basic knowledge on personalized brain network modeling using the open-source simulation platform The Virtual Brain (TVB). Participants will gain theoretical knowledge and apply this knowledge to construct brain models, process multimodal neuroimaging data for reconstructing individual brains, run simulations, and use supporting neuroinformatics tools such as collaboratories, pipelines, workflows, and data repositories.
This workshop provides an opportunity to explore the advanced tools and techniques for data sharing, analysis, visualization, and simulation.