This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.
This course outlines how versioning code, data, and analysis software is crucially important to rigorous and open neuroscience workflows that maximize reproducibility and minimize errors.Version control systems, code-capable notebooks, and virtualization containers such as Git, Jupyter, and Docker, respectively, have become essential tools in data science.
This course begins with the conceptual basics of machine learning and then moves on to some Python-based applications of popular supervised learning algorithms to neuroscience data. This is followed by a series of lectures that explore the history and applications of deep learning, ending with a presentation on the potential of deep learning for neuroscience applications/mis-applications.
This course introduces researchers to the Brain Imaging Data Structure (BIDS), the official community standard for organizing and sharing PET data. BIDS simplifies collaboration, streamlines analysis, and ensures your research remains future-proof by enabling compatibility with an ever-growing ecosystem of open datasets and community-developed tools.
This course consists of a series of webinars organized by the International Neuroethics Society on various neuroethics topics.
This course consists of two introductory lectures on different aspects of statistical models, in which you will learn about the neural coding problem, aspects of neural activity carry information, multiple spike train models, latent variable models, and regularization.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This course tackles the issue of maintaining ethical research and healthcare practices in the age of increasingly powerful technological tools like machine learning and artificial intelligence. While there is great potential for innovation and improvement in the clinical space thanks to AI development, lecturers in this course advocate for a greater emphasis on human-centric care, calling for algorithm design which takes the full intersectionality of individuals into account.
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.
A number of programming languages are ubiquitous in modern neuroscience and are key to the competence, freedom, and creativity necessary in neuroscience research. This course offers lectures on the fundamentals of data science and specific neuroinformatic tools used in the investigation of brain data. Attendees of this course will be learn about the programming languages Python, R, and MATLAB, as well as their associated packages and software environments.
This course outlines how versioning code, data, and analysis software is crucially important to rigorous and open neuroscience workflows that maximize reproducibility and minimize errors.Version control systems, code-capable notebooks, and virtualization containers such as Git, Jupyter, and Docker, respectively, have become essential tools in data science.
A series of short explanations of the basic equations underlying computational neuroscience.
In this course, you will learn about working with calcium-imaging data, including image processing to remove background "blur", identifying cells based on threshold spatial contiguity, time-series filtering, and principal component analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
This working group is a collaboration between OCNS and INCF. The group focuses on evaluating and testing computational neuroscience tools; finding them, testing them, learning how they work, and informing developers of issues to ensure that these tools remain in good shape by having communities looking after them. Since many members of the WG are themselves tool developers, we will also learn from each other and will work towards improving interoperability between related tools.
This workshop is organized by the German National Research Data Infrastructure Initiative Neuroscience (NFDI-Neuro). The initiative is community driven and comprises around 50 contributing national partners and collaborators. NFDI-Neuro partners with EBRAINS AISB, the coordinating entity of the EU Human Brain Project and the EBRAINS infrastructure. We will introduce common methods that enable digital reproducible neuroscience.
This course provides several visual walkthroughs documenting how to execute various processes in brainlife.io, an open-source, free and secure reproducible neuroscience analysis platform. The platform allows to analyze Magnetic Resonance Imaging (MRI), electroencephalography (EEG) and magnetoencephalography (MEG) data. Data can either be uploaded from local computers or imported from public archives such as OpenNeuro.org.
Given the extreme interconnectedness of the human brain, studying any one cerebral area in isolation may lead to spurious results or incomplete, if not problematic, interpretations. This course introduces participants to the various spatial scales of neuroscience and the fundamentals of whole-brain modelling, used to generate a more thorough picture of brain activity.
This course explores ethical and social issues that have arisen, and continue to arise, from the rapid research development in neuroscience, medicine, and ICT. Lectures focus on key ethical issues contained in the HBP – such as the ethics of robotics, dual use, ICT ethical issues, big data and individual privacy, and the use of animals in research.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.
The workshop will include interactive seminars given by selected experts in the field covering all aspects of (FAIR) small animal MRI data acquisition, analysis, and sharing. The seminars will be followed by hands-on training where participants will perform use case scenarios using software established by the organizers. This will include an introduction to the basics of using command line interfaces, Python installation, working with Docker/Singularity containers, Datalad/Git, and BIDS.