This introductory-level course provide learners with an introduction to the field of neuroethics and spans the ethics of neuroscience to the neuroscience of ethics. The ethics of neuroscience lectures cover the ethical issues that arise in device/drug enhancement, imaging/monitoring, and social uses of neuroscience in the legal/justice system. The neuroscience of ethics lectures cover the origin of ethics (neural mechanisms and evolutionary origin).
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This workshop hosted by HBP, EBRAINS, and the European Academy of Neurology (EAN) aimed to identify and openly discuss all issues and challenges associated with data sharing in Europe: from ethics to data safety and privacy including those specific to data federation such as the development and validation of federated algorithms.
This course, arranged by EPFL and also available as a MOOC on edX, aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
This course consists of one lesson and one tutorial, focusing on the neural connectivity measures derived from neuroimaging, specifically from methods like functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI). Additional tools such as tractography and parcellation are discussed in the context of brain connectivity and mental health. The tutorial leads participants through the computation of brain connectomes from fMRI data.
This course consists of three lessons, each corresponding to a lightning talk given at the first day of INCF's Neuroinformatics Assembly 2023. By following along these brief talks, you will hear about topics such as open source tools for computer vision, tools for the integration of various MRI dataset formats, as well as international data governance.
This course is intended to introduce researchers to the Open Science Framework (OSF). OSF is a free, open source web application built by the Center for Open Science, a non-profit dedicated to improving the alignment between scientific values and scientific practices. OSF is part collaboration tool, part version control software, and part data archive.
This is a freely available online course on neuroscience for people with a machine learning background. The aim is to bring together these two fields that have a shared goal in understanding intelligent processes. Rather than pushing for “neuroscience-inspired” ideas in machine learning, the idea is to broaden the conceptions of both fields to incorporate elements of the other in the hope that this will lead to new, creative thinking.
The importance of Research Data Management in the conduct of open and reproducible science is better understood and technically supported than ever, and many of the underlying principles apply as much to everyday activities of a single researcher as to large-scale, multi-center open data sharing.
The International Brain Initiative (IBI) is a consortium of the world’s major large-scale brain initiatives and other organizations with a vested interest in catalyzing and advancing neuroscience research through international collaboration and knowledge sharing. This session will introduce the IBI and the current efforts of the Data Standards and Sharing Working Group with a view to gain input from a wider neuroscience and neuroinformatics community.
The workshop will include interactive seminars given by selected experts in the field covering all aspects of (FAIR) small animal MRI data acquisition, analysis, and sharing. The seminars will be followed by hands-on training where participants will perform use case scenarios using software established by the organizers. This will include an introduction to the basics of using command line interfaces, Python installation, working with Docker/Singularity containers, Datalad/Git, and BIDS.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This course is intended for those interested in electroencephalography (EEG) and event-related potentials (ERPs) techniques, and those interested in collecting, annotating, standardizing, storing, processing, sharing, and publishing data from electrical activity of the human brain.
This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R.
Sessions from the INCF Neuroinformatics Assembly 2022 day 2.
The Neurodata Without Borders: Neurophysiology project (NWB, https://www.nwb.org/) is an effort to standardize the description and storage of neurophysiology data and metadata. NWB enables data sharing and reuse and reduces the energy-barrier to applying data analytics both within and across labs. Several laboratories, including the Allen Institute for Brain Science, have wholeheartedly adopted NWB.
Presented by the Neuroscience Information Framework (NIF), this series consists of several lectures characterizing cutting-edge, open-source software platforms and computational tools for neuroscientists. This course offers detailed descriptions of various neuroinformatic resources such as cloud-computing services, web-based annotation tools, genome browsers, and platforms for designing and building biophysically detailed models of neurons and neural ensembles.