This course contains sessions from the first day of INCF's Neuroinformatics Assembly 2022.
As research methods and experimental technologies become ever more sophisticated, the amount of health-related data per individual which has become accessible is vast, giving rise to a corresponding need for cross-domain data integration, whole-person modelling, and improved precision medicine. This course provides lessons describing state of the art methods and repositories, as well as a tutorial on computational methods for data integration.
This course corresponds to the third session of talks given at INCF's Neuroinformatics Assembly 2023. In this session, the talks revolve around the idea of cross-platform data integration, discussing processes and solutions for rapidly developing an integrated workflow across independent systems for the US BRAIN Initiative Cell Census.
As technological improvements continue to facilitate innovations in the mental health space, researchers and clinicians are faced with novel opportunities and challenges regarding study design, diagnoses, treatments, and follow-up care. This course includes a lecture outlining these new developments, as well as a workshop which introduces users to Synapse, an open-source platform for collaborative data analysis.
As technological improvements continue to facilitate innovations in the mental health space, researchers and clinicians are faced with novel opportunities and challenges regarding study design, diagnoses, treatments, and follow-up care. This course includes a lecture outlining these new developments, as well as a workshop which introduces users to Synapse, an open-source platform for collaborative data analysis.
Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives.
This course contains videos, lectures, and hands-on tutorials as part of INCF's Neuroinformatics Assembly 2023 workshop on developing robust and reproducible research workflows to foster greater collaborative efforts in neuroscience.
This course is intended for those interested in electroencephalography (EEG) and event-related potentials (ERPs) techniques, and those interested in collecting, annotating, standardizing, storing, processing, sharing, and publishing data from electrical activity of the human brain.
Most neuroscience journals request authors to make their data publicly available in appropriate repositories. The requirements and policies put forward by journals vary, and the services provided for different types of data also differ considerably across repositories.
This course corresponds to the third session of talks given at INCF's Neuroinformatics Assembly 2023. In this session, the talks revolve around the idea of cross-platform data integration, discussing processes and solutions for rapidly developing an integrated workflow across independent systems for the US BRAIN Initiative Cell Census.
Sessions from the INCF Neuroinformatics Assembly 2022 day 2.
In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.
The workshop will include interactive seminars given by selected experts in the field covering all aspects of (FAIR) small animal MRI data acquisition, analysis, and sharing. The seminars will be followed by hands-on training where participants will perform use case scenarios using software established by the organizers. This will include an introduction to the basics of using command line interfaces, Python installation, working with Docker/Singularity containers, Datalad/Git, and BIDS.
This course provides a broad, non-technical overview of the field of neurotechnology. It is intended to provide users with a fundamental understanding of how neurotechnology works.
Presented by the Neuroscience Information Framework (NIF), this series consists of several lectures characterizing cutting-edge, open-source software platforms and computational tools for neuroscientists. This course offers detailed descriptions of various neuroinformatic resources such as cloud-computing services, web-based annotation tools, genome browsers, and platforms for designing and building biophysically detailed models of neurons and neural ensembles.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
This course consists of brief tutorials on OpenNeuro.org, a free and open platform for analyzing and sharing neuroimaging data. During this course, you will learn how to deal with your neuroscientific datasets using OpenNeuro.org for operations such as uploading and version control, as well as how to analyze and share your data.
The course provides an introduction to the growing field of electrophysiology standards, infrastructure, and initiatives. From data curation on open research infrastructures like EBRAINS, to overviews of national data analytics platforms like Australia's AEDAPT, the lessons in this course highlight already available resources for the global neuroinformatics commuity while also reinforcing the need for and importance of FAIR science principles in future research projects.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
This module covers the concepts of model predictive control, emulation of the kinematics from observations, training a policy, and predictive policy learning under uncertainty. It is a part of the Deep Learning Course at NYU's Center for Data Science, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer