Skip to main content
Below you will find the latest courses. Please search or select the courses based on the below filters.
Search courses
Course level
INCF TrainingSpace

Biochemical Models

INCF

This course consists of introductory lectures on different aspects of biochemical models. By following this course, you will learn about the various forms plasticity can take at different levels in the brain, how to model chemical computation in the brain, as well as computationally demanding studies of synaptic plasticity on the molecular level. 

 

INCF Assembly 2022 - Day 3 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 Day 3. 

VIEW THE PROGRAM

 

Reproducible Science (Including Git, Docker, and Binder)

Krembil Centre for Neuroinformatics

This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R. 

 
INCF TrainingSpace

INCF Assembly 2023 - Lightning Talks (Day 2)

INCF

This course consists of several lightning talks from the second day of INCF's Neuroinformatics Assembly 2023. Covering a wide range of topics, these brief talks provide snapshots of various neuroinformatic efforts such as brain-computer interface standards, dealing with multimodal animal MRI datasets, distributed data management, and several more. 

 

Introductory Concepts

Krembil Centre for Neuroinformatics

This couse is the opening module for the University of Toronto's Krembil Centre for Neuroinformatics' virtual learning series Solving Problems in Mental Health Using Multi-Scale Computational Neuroscience. Lessons in this course introduce participants to the study of brain disorders, starting from elemental units like genes and neurons, eventually building up to whole-brain modelling and global activity patterns.

 

Publishing

This course is currently under construction but will coming soon.  It will give an overview of the world of scientific publishing, spanning from traditional formats, to open to access, to open, interactive, reproducible, and 'living' publications with modifiable and executable code.

 

Neuroimaging Connectomics

Krembil Centre for Neuroinformatics

This course consists of one lesson and one tutorial, focusing on the neural connectivity measures derived from neuroimaging, specifically from methods like functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI). Additional tools such as tractography and parcellation are discussed in the context of brain connectivity and mental health. The tutorial leads participants through the computation of brain connectomes from fMRI data. 

 

Simulating Brain Microcircuit Activity and Signals in Mental Health

Krembil Centre for Neuroinformatics

This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.

 

Reproducible Science (Including Git, Docker, and Binder)

Krembil Centre for Neuroinformatics

This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R. 

 

The Virtual Brain (TVB) on EBRAINS

The Virtual Brain

In this course we present the TVB-EBRAINS integrated workflows that have been developed in the Human Brain Project in the third funding phase (“SGA2”) in the Co-Design Project 8 “The Virtual Brain”. 

 

Ethics and Governance

Ethical conduct of science, good governance of data, and accelerated translation to the clinic are key to high-calibre open neuroscience.  Everyday practitioners of science must be sensitized to a range of ethical considerations in their research, some having especially to do with open data-sharing. The lessons included in this course introduce a number of these topics and end with concrete guidance for participant consent and de-identification of data.

 

Coding and Vision 101

Allen Institute for Brain Science

This course consists of 12 lectures on the visual system and neural coding produced by the Allen Institute for Brain Science. The lectures cover broad neurophysiological concepts such as information theory and the mammalian visual system, as well as more specific topics such as cell types and their functions in the mammalian retina. 

 

Introduction to Neurodata Without Borders (NWB) for MATLAB Users I

NWB Core Development Team

The Neurodata Without Borders: Neurophysiology project (NWB, https://www.nwb.org/) is an effort to standardize the description and storage of neurophysiology data and metadata. NWB enables data sharing and reuse and reduces the energy-barrier to applying data analytics both within and across labs. Several laboratories, including the Allen Institute for Brain Science, have wholeheartedly adopted NWB.

 
INCF TrainingSpace

Session 4: "Is This FAIR?": Transparency in EDI, Career Development, & Management

INCF

There is a growing recognition and adoption of open and FAIR science practices in neuroscience research. This is predominately regarded as scientific progress and has enabled significant opportunities for large, collaborative, team science. The efforts and practical work that go into creating an open and FAIR landscape extend far beyond just the science.

 

Neuroscience for Machine Learners (Neuro4ML)

Neural Reckoning Group

This is a freely available online course on neuroscience for people with a machine learning background. The aim is to bring together these two fields that have a shared goal in understanding intelligent processes. Rather than pushing for “neuroscience-inspired” ideas in machine learning, the idea is to broaden the conceptions of both fields to incorporate elements of the other in the hope that this will lead to new, creative thinking.

 

Optimal Control

Neuromatch Academy

Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.

 

INCF Assembly 2022 - Day 2 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 2. 

VIEW THE PROGRAM

 
INCF TrainingSpace

Session 9: Event Annotation in Neuroimaging Using HED: From Experiment to Analysis

INCF

This workshop delves into the need for, structure of, tools for, and use of hierarchical event descriptor (HED) annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. HED are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding.

 

Foundations of Machine Learning in Python

NeurotechEU

Course designed for advanced learners interested in understanding the foundations of Machine Learning in Python.

General: The course consists of 15 lectures (ca. 1-2 hours each) and 15 exercise sheets (for ca. 6 hours of programming each).

Institution: High-Performance Computing and Analytics Lab, University of Bonn

 

INCF Assembly 2022 - Day 1 Sessions

INCF

Sessions from the INCF Neuroinformatics Assembly 2022 day 1. 

VIEW THE PROGRAM